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Abstract—Permutation tests are widely used for significance 

testing in fMRI MVPA (multivariate pattern analysis) studies, 

but the precise way in which the tests are carried out varies, and 

test design is non-trivial because of complex, autocorrelated, 

and stratified dataset structures. Previously, we described 

permutation tests for single-subject datasets, recommending 

adoption of “dataset-wise” schemes, in which examples are 

relabeled prior to cross-validation. Here, we extend that work 

by describing permutation schemes for group analyses: datasets 

with more than one participant. Group-level MVPA is most 

often performed with either cross-validation on the subjects or 

within-subjects cross-validation, each of which requires a 

different strategy for permutation testing, as illustrated here. 

Keywords- fMRI; classification; significance; permutation; 

MVPA; cross-validation; 

I.  INTRODUCTION 

Permutation testing is a preferred method of establishing 
statistical significance for task-based fMRI, since these 
datasets tend to have a complex stratified structure, including 
groups of participants (e.g. patient or control), multiple 
scanning sessions, and ordered trials within scanning runs. 
Additional layers of complexity arise in MVPA (multivariate 
pattern analysis) studies, due to the use of cross-validated 
statistics (e.g., classification accuracy from linear support 
vector machines (SVM)). The multiple layers of 
dependency in such stratified datasets cannot be 
disregarded during significance testing without risking 
false conclusions, since they constrain how the examples 
can be relabeled [1-5].  

The concept of exchangeability is woven into the logic 
and theoretical foundations of permutation testing, and 
guides how each test should be designed. Permutation tests 
estimate significance by creating a null distribution to 
which the true accuracy (obtained from analyzing the 
dataset with the true, non-permuted labels) can be 
compared: if the true accuracy is greater than all accuracies 
making up this null distribution, its significance is 1/(size 
of null distribution + 1). The validity of a permutation test 
is thus tied to the validity of its null distribution: it requires 
a null distribution that genuinely reflects the accuracies 
obtained when there is no relationship between the task 
labels and the voxel values [6-8]. The accuracies when 
there is no relationship are calculated from datasets in 
which the task labels have been randomized 

(“exchanged”), so disrupting any relationship between the 
labels and voxel values.  

However, given the complex structure of the typical 
MVPA dataset, the labels can generally not be permuted fully 
at random, but rather within the relevant dataset layers 
(“exchangeability blocks” [4, 7]); a “stratified” permutation 
test. Formally, within each exchangeability block the 
examples can be relabeled without affecting their joint 
probability distribution [8, 9]; in MVPA terms, we expect the 
relabeled datasets to classify at chance. 

The complex structure of MVPA datasets can lead to 
ambiguity when designing permutation tests: what are the 
exchangeability blocks? How, precisely, should the labels be 
randomized? For example, should the labels be randomized 
within each participant separately, or across participants? In 
previous work [3], we described permutation schemes for 
single-subject datasets, suggesting that the “dataset-wise” 
permutation scheme is usually most appropriate, since it 
relabels the examples prior to conducting the cross-validation, 
thus maintaining more of the true dataset’s structure. 
However, most neuroimaging datasets contain more than one 
person, and most hypotheses involve inferences at the group, 
not individual, level. This paper extends our previous work by 

 
Figure 1. The example dataset. The table (left) is the dataset, with examples 

in the rows and voxels (v1, v2, ... vn) in the columns. “sub” is the subject 

identifier, “run” is the scanning run, and “task” is whether the trial was of 
viewing faces (“f”) or places (“p”). The boxes (right) show the data 

representation used in later figures. Since this is the true-labeled dataset, the 

circled task labels are white and match the “task” column. 



describing permutation testing for group analyses: analyses 
with more than one person.   

For clarity, common MVPA terminology is used in this 
paper, but its recommendations are not restricted to fMRI, nor 
to classification-based statistics. So, while the examples and 
discussion refer to “classification”, “accuracy”, and “voxels”, 
these terms are intended to apply equally to other cross-
validated statistics (e.g., cvMANOVA discriminability [10]), 
and data from other  neuroimaging modalities (e.g.,  MEG 
sensors). Similarly, “significance” is intended to refer to 
statistical significance in the frequentist sense typically used 
in neuroimaging, not importance more generally. 

II. EXAMPLE DATASET 

As in [3], the permutation schemes are illustrated using an 
example dataset with representative structure (though far 
smaller than a real study). Concretely, suppose the example 
dataset is a task-based study performed with three human 
subjects (Fig. 1). Each person completed two fMRI scanning 
runs, and each scanning run was made up of two blocks each 
of two tasks: viewing pictures of places and faces. The task 
blocks were presented in a random order, separated by enough 
time to make it reasonable to assume that their labels can be 
permuted, and with no missings. The hypothesis is that task 
(viewing a face or place) can be classified (with a linear SVM) 
in these voxels (corresponding to a small region of interest) 
and in these participants. 

III. TWO FORMS OF CROSS-VALIDATION WITH GROUPS 

In this example experiment we wish to classify task in our 
group of people. Note that this is not classifying the subjects 
themselves (e.g., by gender or diagnosis), but rather task 
within subject. Two different forms of cross-validation are 
common for this type of analysis, which are referred to here 
as “cross-validation on the subjects” and “within-subjects 
cross-validation”. Since the dataset is partitioned differently 
for each form of cross-validation, each has different patterns 
of dependency and variability, and thus requires a different 
permutation strategy. These are not the only forms of cross-

validation for designs with multiple participants (another is 
“pooled-subjects”, such as leave-one-run-out cross-validation 
with data from all subjects at once); the logic presented here 
is intended to provide guidance on for constructing tests for 
other designs. 

A. Cross-Validation on the Subjects 

The key characteristic of cross-validation on the subjects 
is that the subjects’ datasets are the units of cross-validation. 
Leave-one-subject-out cross-validation (Fig. 2) is common in 
MVPA. Under this scheme, on each fold data from all but one 
subject is used for training, with data from the left-out subject 
used for testing. Each subject is left out in turn, so the number 
of cross-validation folds is equal to the number of subjects. 
When the dataset includes larger numbers of subjects 
significance can be improved by leaving out more than one 
subject on each fold, such as, for a 120-subject dataset, 
performing ten-fold cross-validation, leaving twelve subjects 
out on each fold [11]. 

Regardless of the number of subjects’ data left out each 
fold, the critical aspect of cross-validation on the subjects is 
that an independent accuracy does not result for each subject, 
but only the accuracy averaged over cross-validation folds: a 
single value for the dataset as a whole. Thus, unlike within-
subjects cross-validation designs (described later), it is not 
possible to use a simple parametric statistic to establish 
significance: permutation testing is required.  

The structure of the permutation scheme when cross-
validation is on the subjects parallels that of performing a 
leave-one-run-out cross-validation on a single person’s data 
(see [3]; particularly Figs 2 and 4), with individuals taking the 
place of runs. The recommendation for designing a 
permutation test when cross-validation is on the subjects is 
thus the same as for the analysis of a single subject: the test 
should follow a dataset-wise permutation scheme. 

A single iteration of a permutation test with the example 
dataset under a dataset-wise scheme is illustrated in Fig. 3. 
Each iteration begins by relabeling some of the examples, 
after which the cross-validation and classification is carried 

 
Figure 3. Single iteration of a permutation test when cross-validation is on 

the subjects. The labels have been permuted within the second run in 

subject 1 and the first run of subject 3 (highlighted with blue). Note that the 

analysis structure matches Fig. 2; only labels have changed. 

 
Figure 2. Determing the mean accuracy with cross-validation on the 

subjects; leave-one-subject-out cross-validation with the example dataset is 
shown. The subjects do not contribute independent accuracy estimates, but 

rather make up the cross-validation folds. 



out on this relabeled dataset in the same way as on the true-
labeled dataset (note the similarity between Fig. 2 and Fig. 3: 
only task labels change). The mean accuracy (averaged over 
the cross-validation folds) from each iteration is recorded, and 
used to construct the null distribution.  

How should the examples be relabeled? In general, labels 
should be permuted within the most fundamental unit of the 
dataset (the exchangeability block), so that the relabeling does 
not change the structure of the dataset in any other way. For 
example, in Fig. 3 the relabeling was done within runs, even 
though partitioning is on the people (not the runs). Often, trials 
within the same fMRI scanning run are more similar to each 
other than to trials from other scanning runs, and relabeling 
examples within each scanning run ensures that this 
dependency is included in the null distribution.  

B. Within-Subjects Cross-Validation 

The key characteristic of the within-subjects form of 
cross-validation for group analysis is that cross-validation 
occurs within the individual participants, with only the 

resulting statistic combined across participants. Whichever 
cross-validation technique is appropriate should be performed 
within the individuals; Figs. 4 and 5 show leave-one-run-out 
cross-validation. The example dataset has two runs per 
person, so two cross-validation folds are performed within 
each person, and so the mean accuracy for each person is 
calculated by averaging those two accuracies. 

Since each person is analyzed separately, these designs 
produce independent accuracies for each person, which are 
averaged to obtain the group-level accuracy; we want to 
establish a significance for this group average (Fig. 4). Since 
the group-level statistic summarizes independent values, 
multiple methods can be used to estimate its significance, both 
parametric and permutation-based. While testing whether the 
group-level mean is greater than chance with a t-test has been 
common in the MVPA literature, mixed logit models are 
likely more appropriate, given that accuracies can only fall 
between 0 and 1 [12]. 

Designing the permutation scheme for a within-subjects 
cross-validation design is different than when cross-validation 

 

Figure 4. Determining the group-level mean accuracy using within-subjects-cross-validation. Leave-one-run-out cross-validation is performed within each 

individual participant, shown in the diagram by dotted red lines. These mean accuracies from each person are then averaged, giving the group-level mean 

accuracy. The group-level mean is thus calculated from statistically independent accuracies. 

 

 

Figure 5. Single iteration of a permutation test with within-subjects cross-validation. In this illustration the labels have been permuted on the second run in 

all three subjects (blue), so the group-level mean is calculated from means resulting from the same relabeling in all individuals. 



is on the subjects, because we are not establishing significance 
(by creating a null distribution) for the value directly resulting 
from the cross validation (Fig. 2), but rather for the average of 
values resulting from independent  cross-validated analyses 
(Fig. 4). Thus, the permutation test requires creating a null 
distribution for the group-level mean accuracy, which is 
calculated from individual participants’ mean accuracies, and 
so we need to properly account for both the structure of each 
individual’s dataset and for the relationship between 
individuals (i.e., that the group-level statistic is calculated 
from one value from each person). 

Generally, the permutation test for each individual should 
be calculated following a dataset-wise scheme [3], designed 
with the same considerations as if they were the only person 
in the dataset. Accordingly, Fig. 5 shows a single iteration of 
the permutation test in which the examples have been 
relabeled within the second run only (i.e., runs are the 
exchangeability blocks).  

Since a mean accuracy is calculated for each person 
independently, the permutation test within each individual 
could also be carried out independently, with different 
relabelings for each person. Applying different sets of 
relabelings to different people may be unavoidable, such as 
when missing data causes the number of examples in each 
person to vary, or the number of examples is too small to allow 
sufficient unique relabelings within each individual. 
However, when possible, it seems ideal to use the same set of 
permuted labels within each individual, so that the group-level 
mean accuracy for each iteration of the permutation test is 
calculated from the same labels in each person (as shown in 
Fig. 5: the second run was relabeled in the same way in all 
subjects). After all, the true-labeled group-level mean 
accuracy was calculated using the same (true) labels in each 
person. More research is needed, but there seems little risk of 
biasing the null distribution if different relabelings are used in 
each individual when necessary (such as in [5]), so long as 
each individual contributes one mean accuracy to the group-
level mean in each iteration of the permutation test. 

IV. DISCUSSION 

This paper describes how to perform permutation tests for 
two common ways of carrying out group-level MVPA: 
within-subjects cross-validation and cross-validation on the 
subjects. The diagrams and logic suggested in this paper build 
upon the recommendations for single-subject analyses made 
in [3]. It is hoped that, together, these papers clarify the 
necessary considerations for performing permutation tests, 
establish a vocabulary for describing the precise manner in 
which permutation tests are carried out, and provide 
guidelines for designing permutation tests for arbitrary 
experimental hypotheses. 

While this paper is intended to make the design of 
permutation tests clear and straightforward, their execution is 
often complex, with many constraints on how the examples 
are relabeled. Thus, it is often advisable to precompute the 
relabelings that will be used for the permutation test, rather 
than calculate them on the fly. Precomputing the relabelings 

(e.g., in the first iteration, subject 1’s examples will be labeled 

f p p f; in the second iteration, subject 1’s examples will 

be labeled p f f p, etc.) has several advantages. First, the 
validity of each relabeling can be confirmed: is the number of 
examples of each type equal in each exchangeability block 
(run, participant, etc.) on each permutation? The relabelings 
can also be checked for duplicates, and that their distribution 
is approximately random (if a subset of the possible 
relabelings are used, rather than a complete permutation test). 
Finally, precomputing the set of relabelings simplifies running 
the analyses as individual jobs, so that different machines can 
run different iterations simultaneously. 
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