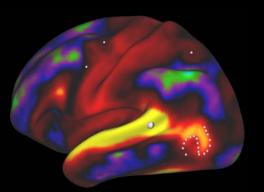
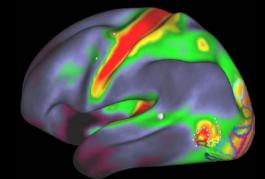


# Structural MRI: Precise Neuroanatomical Localization through Careful Processing Matt Glasser: Lecture 1 of 3





human Connectome Project



# Motivation

- So far you've:
  - Had basic introduction to the HCP and some neuroanatomical realities from David
  - Learned how to acquire high resolution HCP-style data from Gordon and Mike
  - Learned about surface, volume, and CIFTI files from Tim
  - Had a chance to explore our visualization tool, Connectome Workbench, with Jenn
- Now we'll focus on the careful preprocessing and registration approach that
  - Preserves the high resolution of HCP-style data
  - Allows for precise spatial localization across subjects and studies
  - We hope you'll find useful for your future work
- My lecture format: opportunities for questions after each topic

#### Lecture Topics

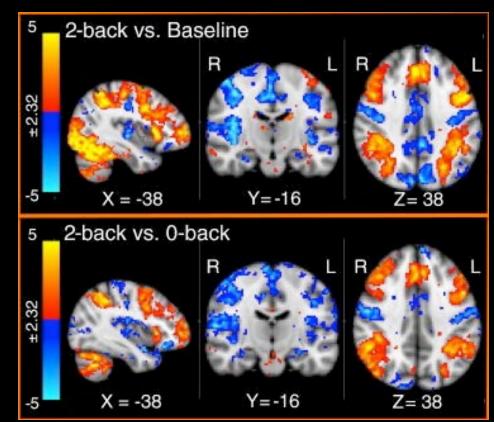
- Neuroanatomical localization in the HCP's CIFTI grayordinates-based neuroimaging analysis paradigm vs traditional volume-based analysis
- The HCP's Minimal Preprocessing Pipelines: From raw images to standard CIFTI grayordinates space
- Cross-subject surface registration based on cortical areal features vs folding patterns
- Removal of group average registration drift to for more accurate comparisons across studies
- Reproducibility of HCP data after careful preprocessing

# Subjects or Studies

- Why bother with spatial localization?
  - Is my effect of interest reproducible across people?
  - Is one group of people different from another group?
  - Did I get the same result as another study?
  - Can I see weak brain/behavior relationships when I average across people?
- These questions all assume...
  - We have aligned brain areas across subjects and studies—like with like
  - There is one to one correspondence across brains at the level we are studying
    - For the higher levels of neural hierarchy, e.g. functional systems and brain areas this is usually true
    - For the lower levels of neural hierarchy, e.g. individual neurons, this is unlikely to be true
- Data analysis methods make a big difference in spatial localization accuracy
  - And the precision/validity of the answers to the above questions
- We will now compare and contrast two methods of analyzing brain imaging data

# What Has Traditionally Been Done: Volume-based Brain Imaging Analysis

- Take a bunch of brains in a study and:
  - Use <u>volume-registration</u> to align them to a <u>standard average brain</u> <u>space</u> (e.g. MNI space)
  - <u>Smooth</u> (i.e. blur) them in an attempt to reduce misalignments
  - Do some kind of <u>voxel-wise statistical</u> <u>analysis</u>, e.g.
    - Task fMRI Analysis
    - Resting State Analysis
    - Structural Image Analysis (e.g. on T1w/T2w ratio)
- Out comes a thresholded statistical map which...
  - Represents the confidence in each voxel that any positive or negative effect was not due to chance
- The thresholded statistical map has some <u>clusters</u> of significant voxels
  - Are these likely to represent brain areas?



Barch et al (2013)

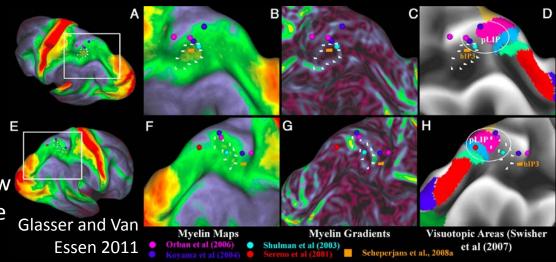
### Volume-based Brain Imaging Analysis: Where Am I?

- The investigator looks at the gyral and sulcal landmarks near the cluster on the standard average brain atlas and gives the cluster a name:
  - "e.g. Left Dorso-Lateral Prefrontal Cortex (L DLPFC), Right Temporal-Parieto-Junction (R TPJ)"
- The investigator may attempt to assign each cluster to a brain area based on an interpretation of Brodmann's schematic drawing from 1909 (i.e. a Brodmann Area—BA)
- Typically each cluster will be summarized by the coordinates of its highest value (peak) or its center of gravity in the standard space
- The investigator will report these <u>standard space coordinates</u> (e.g. MNI coordinates) in a data table in their paper
  - Hoping that if everyone aligns their brains to the same standard volume space they will be able to compare results across studies

Data Table From Brain Imaging Paper

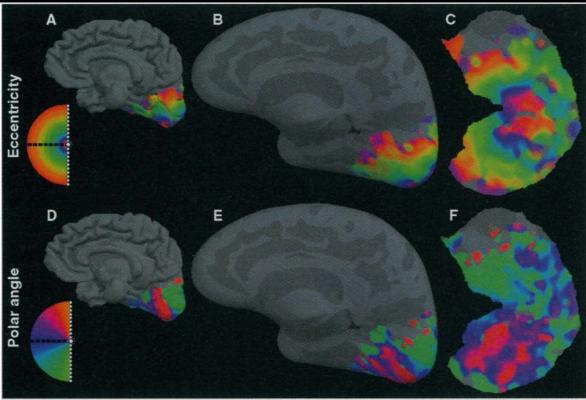
#### Many Papers Are Published Using This Approach

- It has a number of advantages:
  - It's better than no spatial localization at all (what mostly preceded it)
  - It's simple to implement and understand
  - The statistical approximations used are reasonably easy
  - It's what most senior investigators are used to (politics are key)
- Volume-based Neuroimaging Analysis Methods also have a number of disadvantages through their implicit assumptions
  - The brain is not a uniform volume of tissue
  - Brain areas have many widely varied shapes and sizes, not single points (or spheres)
  - To know you are in a particular brain area you need to know its borders
  - Brodmann Areas (BAs) are from a 100 year old drawing, not the brains being studied
  - Cross-subject alignment is reasonable in non-cortical regions, but quite poor in the cerebral cortex, causing substantial blurring
  - Thus, it's challenging compare results across studies and know you are talking about the same thing



#### Data from the Sheet-like Cerebral Cortex Is More Easily Analyzed and Visualized on Surface Models

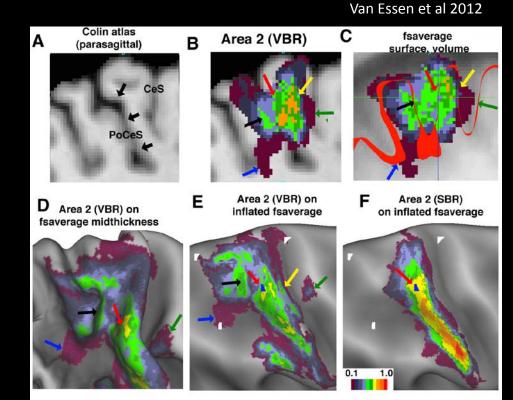
- Making a surface model used to be entirely manual and very tedious (Van Essen and Maunsell 1980)
- By the time fMRI was invented computers could help (e.g. Sereno et al 1995)
- Studies of the visual system have largely followed Sereno et al's lead, analyzing and visualizing data on cortical surfaces
- As a result, we have a better understanding of the boundaries of and fine details within the brain's visual areas
- Many other parts of the brain, especially cognitive regions, have largely had to wait for such careful study
- As a result, lots of cool stuff is likely yet to be discovered!



Sereno et al (1995)

#### <u>Surface-based Registration</u> Substantially Improves Spatial Localization in Cerebral Cortex

- Aligning cortical areas along the 2D cortical sheet across subjects is fundamentally easier than trying to align both the cortical areas and the folded cortical sheet itself in a 3D volumetric registration
- It's much easier to preserve the spatial relationships and borders between cortical areas on the surface
  - e.g. area 2 only on the anterior bank of the post central sulcus

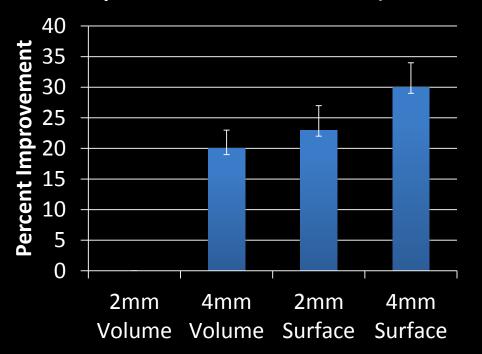


Probabilistic cytoarchitectonic areas from Zilles and Amunts group registered on the surface by Fischl et al (2008)

#### Simply Using Folding-based Surface Registration Is a Big Improvement Over Volume-based

- Volume Registered:
  - 2mm FWHM volume smoothed
  - 4mm FWHM volume smoothed
- Surface Registered:
  - 2mm FWHM surface smoothed
  - 4mm FWHM surface smoothed
- Percent improvement in task fMRI statistical maps over 2mm volume registered
  - 2mm surface smoothed better than 4mm volume smoothed

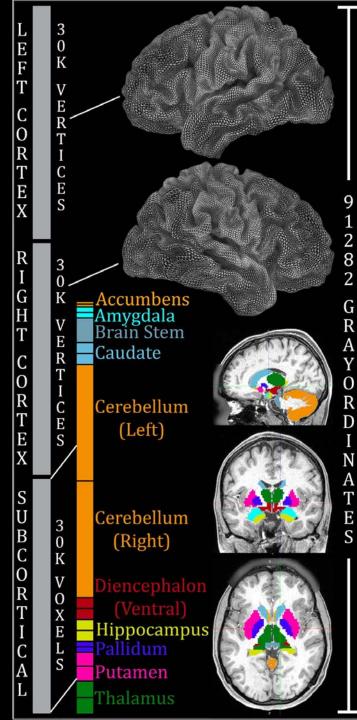
#### Task fMRI Statistical Map (Percent improvement vs 2mm Volume)



Not a novel finding (across many modalities): Fischl et al 1999, Fischl 2008, Anticevic et al., 2008, D.C. Van Essen et al., 2012, Frost and Goebel, 2012, Tucholka et al., 2012, Smith et al 2013, etc...

#### Doing Better than Volume-based for the Whole Brain

- Consider gray matter structures according to the geometric model best suited for each, surfaces for the sheetlike cerebral cortex and volumes for globular subcortical nuclei
- Use standard <u>Grayordinates</u>, which can be either surface vertices or subcortical voxels
- Register individuals' cortical data using nonlinear surface registration and subcortical data using nonlinear volume-based registration
- <u>Grayordinates-based imaging analyses</u> can greatly reduce the analysisinduced uncertainty in spatial localization in brain imaging studies



#### Other Things to Think about When Switching to CIFTI Grayordinates

- Large amounts of spatial smoothing is often done in volume-based analyses in lieu of aligning brain areas and this approach has been brought to the surface
  - "As long as you smooth in 2D on the surface, 15mm FWHM is okay, besides smoothing makes my statistics go up"
  - Is altering your data in this way a good idea or does it make it harder to see what is really going on?
- Neuroimaging data have many thousands of datapoints, each with relatively low SNR, but most brain imagers are after a coarser level of information
  - Should one consider these noisy datapoints all independently (with post-hoc statistical approximations to deal with multiple comparisons)?
  - Alternatively could we often simplify the problem by making use of the brain's intrinsic neuroanatomical organization to increase our sensitivity and power? (lecture 2)
- In neuroimaging, maps of statistical significance are often all that is shown and data that is below the chosen threshold is often changed to zero and hidden
  - How does thresholding change the appearance of the data for effects that are just above vs just below the threshold?
  - How reproducible is the spatial pattern of this threshold across different studies or even different groups within a study?
  - Do statistical thresholds reflect areal boundaries or something else?

### Volume-based vs Grayordinates-based Spatial Localization Summary

- Volume-based analysis is easy to do, but relies on a number of problematic assumptions about the brain
- Volume-based cortical spatial localization is not very good and we don't really know what cortical areas are being shown in most published results
- The outcome is a large amount of literature with substantial challenges for reconciling conflicting results or even knowing if they are conflicting or not
- Grayordinates-based analysis combines cortical surface and subcortical volume analyses in order to analyze the whole brain and offers the promise of better spatial localization
- Grayordinates-based analyses can take advantage of further registration improvements (later section)
- Questions about analysis paradigms?

#### Lecture Topics

- Contrast neuroanatomical localization in the HCP's CIFTI grayordinates-based neuroimaging analysis paradigm vs traditional volume-based analysis
- The HCP's Minimal Preprocessing Pipelines: Getting from raw images to standard CIFTI grayordinates space
- Cross-subject surface registration based on cortical areal features vs folding patterns
- Removing group average registration drift to allow unbiased spatial comparisons across studies using areal overlap instead of 3D peak activation coordinates
- Reproducibility of HCP data after careful preprocessing

#### Getting to Grayordinates: Goals of (Spatial) Minimal Preprocessing Pipelines in the HCP

- Remove spatial artifacts like distortions to get back to the subject's physical space
- Align data within each subject to remove the effects of motion/get all modalities into spatial correspondence
- Make the geometric models that underlie all of the other analyses
- Begin the process of getting brain areas aligned across subjects
- The HCP Pipelines are publicly released (see <a href="https://github.com/Washington-University/Pipelines/releases">https://github.com/Washington-University/Pipelines/releases</a>) and described in a publication (Glasser et al 2013)
- We will just scratch the surface here, for more detail, read the paper/code ;)

# Pipeline Architecture (Order of Operations)

**HCP Minimal Preprocessing Pipelines** 

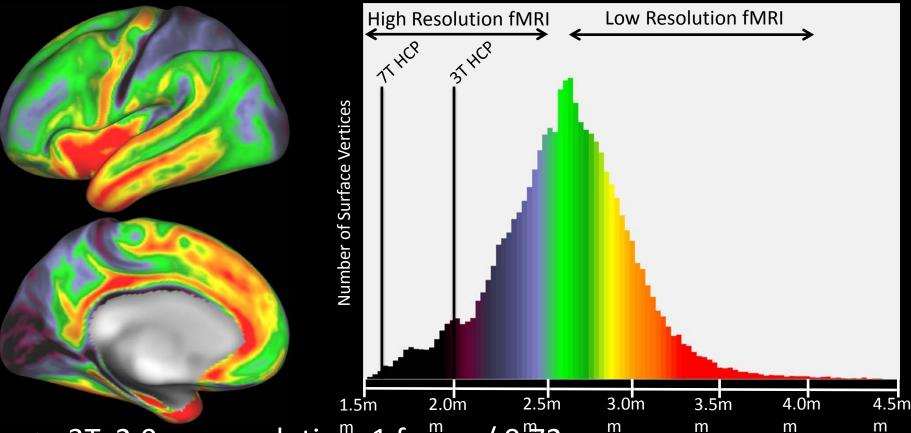
Files organized in the "Connectome In a Box" format:

 – \${StudyFolder}/\${Subject}/...

# Minimum Image Acquisition Requirements for the HCP Pipelines

- Structural
  - T1w MPRAGE (at least 1mm isotropic, ideally 0.8mm or better)
  - T2w SPACE (at least 1mm isotropic, ideally 0.8mm or better, FLAIR also works but is not optimal)
- Functional
  - fMRI (preferably high spatial and temporal resolution)
  - SBRef if using multi-band
  - Field Map (preferably of the spin echo variety, matched to fMRI geometry)
- Diffusion
  - DWI (preferably high spatial and angular resolution, reversed phase encoding directions)

#### What is High Resolution fMRI? Cerebral Cortical Thickness vs Imaging Resolution



- 3T: 2.0mm resolution, 1 frame / 0.72s
- 7T: 1.6mm resolution, 1 frame / 1.0s
- High temporal resolution is ~1.0s or less

### The PreFreeSurfer Pipeline

- Correct gradient and b0 (readout) distortion and rigidly align to MNI (subject's physical space in a standard orientation)
- Initial robust brain extraction (\*FreeSurfer needs help here)
- Register T1w and T2w images
- Bias field correction (\*FreeSurfer needs help here)
- Nonlinear volume registration to MNI (for subcortical alignment)
- Creates the subject's folder structure and gets the data ready for FreeSurfer:
  - \${StudyFolder}/\${Subject}/T1w Native Volume Space
  - \${StudyFolder}/\${Subject}/MNINonLinear Atlas Volume Space

# The FreeSurfer Pipeline

- Automatically generates surfaces and subcortical segmentation
- Runs FreeSurfer's recon-all pipeline with a few modifications
  - Help for brain extraction and intensity normalization
  - Use high resolution T1w for more accurate white matter surface placement
  - Use high resolution T2w for more accurate pial surface placement
- A modified pipeline, FreeSurferNHP automatically generates macaque and chimpanzee surfaces and subcortical segmentations
  - Will hopefully be released in the future
  - Otherwise the HCP pipelines will run on other species with appropriate templates/settings

# The PostFreeSurfer Pipeline

- Performs initial folding-based surface registration (MSMSulc)
- Gets data into standard NIFTI/GIFTI/CIFTI formats and gets it ready for easy visualization in Connectome Workbench (makes the spec files)
- Creates the rest of the subject's folder structure:
  - \${StudyFolder}/\${Subject}/\${VolumeSpace}/Native Native surface mesh
  - \${StudyFolder}/\${Subject}/\${VolumeSpace}/fsaverage \_LR32k/ - 2mm standard surface mesh
- Computes myelin maps...

#### What is a Myelin Map?

4%

96%

- Measure of cortical graymatter myelin content based on T1w and T2w images – more in lecture 2 on brain parcellation
- Red/orange/yellow high myelin
- Black/purple/blue low myelin

# The fMRIVolume Pipeline

- Removes gradient and b0 distortions
- Corrects for motion with spatial realignment
- Registers fMRI to T1w data with BBR (especially accurate cross-modal registration algorithm)
- Combines all transforms and resamples data into MNI space in a single spline interpolation
- Creates the volume fMRI timeseries
  - \${StudyFolder}/\${Subject}/MNINonLinear/Results/\${f MRIName}/\${fMRIName}.nii.gz

# The fMRI Surface Pipeline

- Cortical ribbon-based volume to surface mapping using the individual's white and pial surfaces together with a mask to remove locally noisy voxels (veins, etc)
- Resampling to standard grayordinates space on the surface and within the subcortical volume structures
- Minimal smoothing (2mm FWHM) to regularize the mapping to the 2mm standard grayordinates space
- Creates the CIFTI fMRI dense timeseries
  - \${StudyFolder}/\${Subject}/MNINonLinear/Results/\${fMRIN ame}/\${fMRIName}\_Atlas.dtseries.nii
- Steve will talk about clean up of temporal artifacts from fMRI data later today

# The Diffusion Pipeline

- Remove distortions from gradients, b0, and eddy currents
- Corrects for motion with spatial realignment
- Register DWI to T1w data with BBR
- Rotate diffusion gradient vectors into structural space, and compute gradient nonlinearity correction of these vectors in that space
- Creates the diffusion data files
  - \${StudyFolder}/\${Subject}/T1w/Diffusion/data.nii.gz, bvals, bvecs, nodif\_brain\_mask.nii.gz, grad\_dev.nii.gz
- Much more about this pipeline and image distortion correction from Jesper on Wednesday

### HCP Minimal Preprocessing Pipelines Summary

- HCP Pipelines were written to take advantage of high spatial and temporal resolution data
  - Also to set a reasonable "minimum" standard of HCP data preprocessing
- Have tried to remove all image distortions, subject motion, and use very accurate registration methods
- Generate data ready for analysis in the HCP's CIFTI grayordinates analysis paradigm
- HCP Pipelines have minimum data acquisition requirements
  - If you don't want to have to do major hacking to achieve something that may not be as good
  - T1w, T2w, fMRI, field map will also be sufficient for additional pipelines to be discussed below
- HCP Pipelines are based on the open source development model and we want to see them improve as the field needs, so patches are welcome!
- Question about HCP Pipelines?

#### Lecture Topics

- Contrast neuroanatomical localization in the HCP's CIFTI grayordinates-based neuroimaging analysis paradigm vs traditional volume-based analysis
- The HCP's Minimal Preprocessing Pipelines: Getting from raw images to standard CIFTI grayordinates space
- Cross-subject surface registration based on cortical areal features vs folding patterns
- Removing group average registration drift to allow unbiased spatial comparisons across studies using areal overlap instead of 3D peak activation coordinates
- Reproducibility of HCP data after careful preprocessing

# Cortical Folding-based Surface Alignment Is Often Blurry

- Registration using folding patterns alone does not accurately align cortical areas across subjects in many parts of cortex
- When folding patterns are consistent across subjects and areas are consistently located relative to folds, areas may be well aligned by foldingbased registration
  - e.g. V1 or early somatosensory and motor areas
- Many other regions areas may still have significant misalignment, even after folding-based registration
  - e.g. around MT+, FEFs, putative VIP/LIP complex, etc

From Fischl et al 2008

100%



50%

Max Overlap

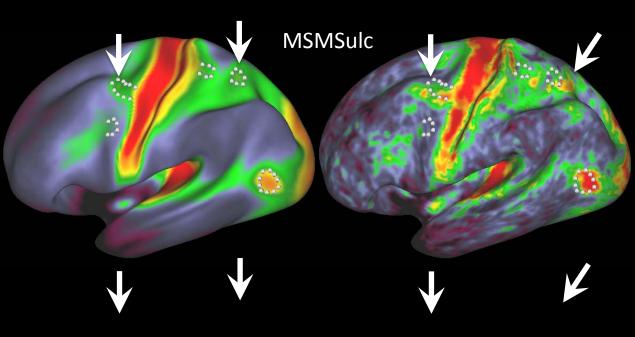
#### How Do We Do Better?

- Align subjects based on features more closely related to their cortical areas than folding is, e.g.
  - Myelin maps
  - Resting state functional connectivity
  - Topographic maps
  - Even the cortical area definitions themselves
- New surface registration algorithms like Multimodal Surface Matching (MSM) (Robinson et al 2014) offer improved areal alignment with cortical areal feature-based surface registration

Of course MSM starts by registering cortical folds

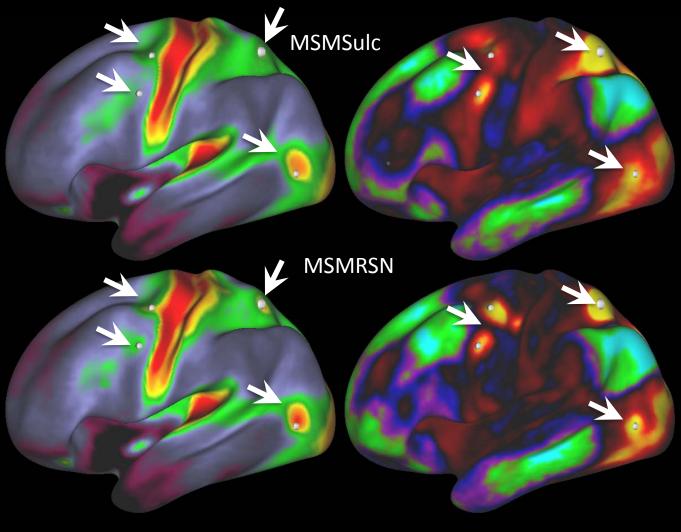
# MSM with Myelin Maps

- Myelin maps are more closely tied to cortical areas than are folding patterns
- Some areas are blurry on group average myelin maps with folding-based registration (MSMSulc)
  - Because individuals are misaligned
- MSM improves the alignment of myelin maps in individuals and sharpness of group maps

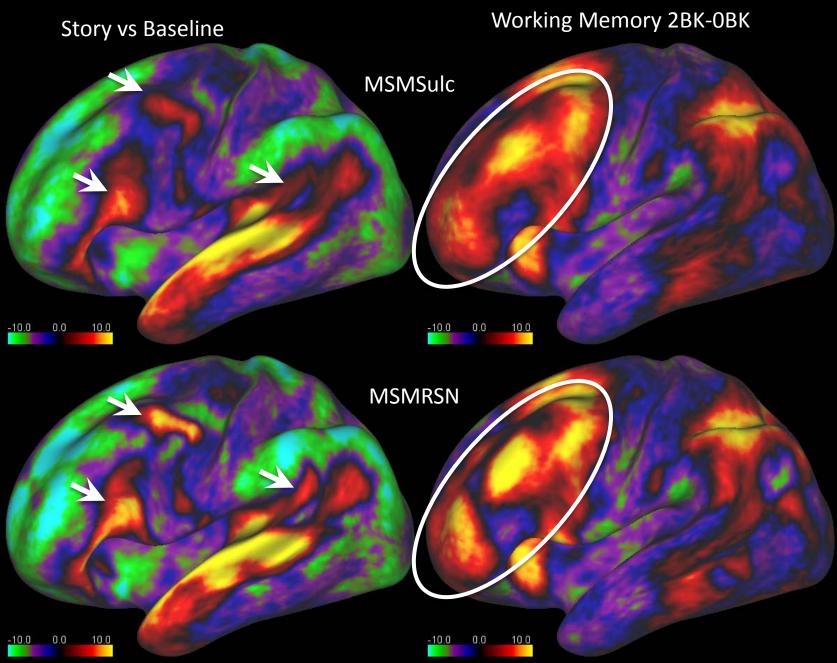


# Resting State Networks Can Also Be Used with MSM for Cross-subject Registration

- RSNs have useful contrast over more of the brain than myelin maps
- They improve the alignment of functional connectivity maps
- They still do a good job aligning myelin maps



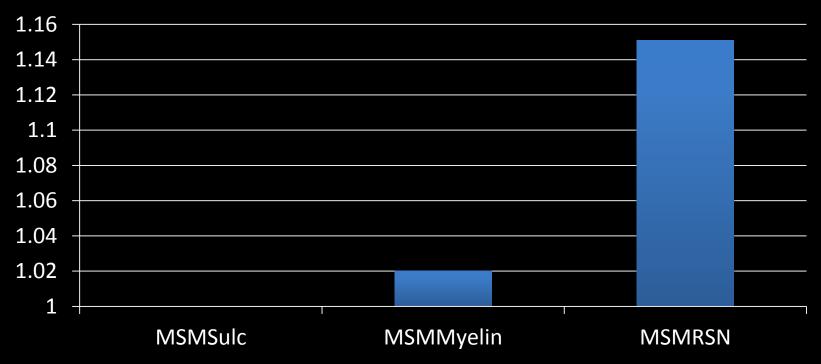
#### MSMRSN: Sharper Task fMRI Contrast Maps



#### Quantitative Evaluation of MSM Registration

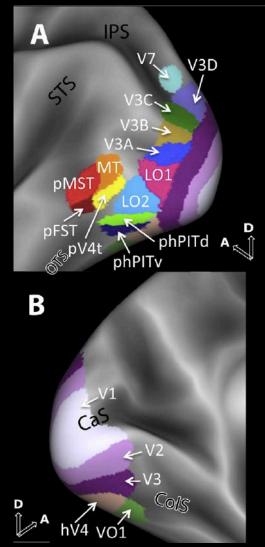
- MSM is really helpful for sharpening spatial patterns in group maps
- Also Really helpful for increasing cross-subject statistics

#### tfMRI Cluster Mass of \${Method} / MSMSulc

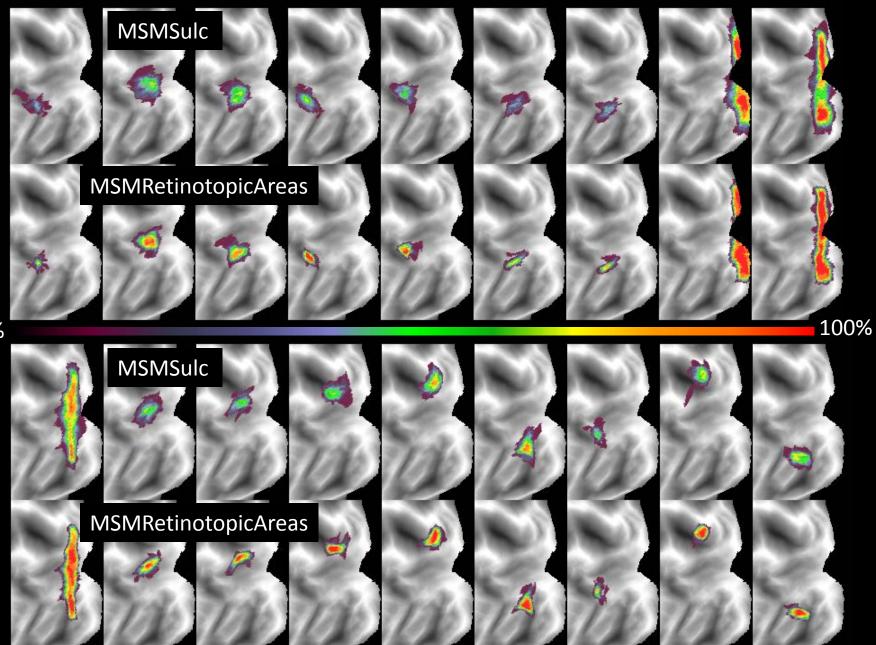


#### MSM Can Also Be Used to Register Binary ROIs of Cortical Areas

- 18 Area retinotopic fMRI parcellation of 12 individuals by Guy Orban's group (Abdollahi et al 2014).
- We compared the probabilistic maps and maximum probability map (MPM) across several registration techniques including MSMSulc (folding) and MSMRetinotopicAreas



#### MSMRetinotopicAreas: Areal Probability Maps



0%

### MSMRetinotopicAreas: Maximum Probability Maps

MSMSulc

MSMRetinotopic Areas

#### The Next HCP Data Release Will Output Grayordinate-wise Data Aligned with Arealfeatures

- Current data are aligned with folding-based registration (MSMSulc)
- Next release will provide data aligned with myelin + resting state networks + visual topography (MSMAII)
- Going forward, most cortical areas will be aligned across most subjects
- However, lecture 3 tomorrow will cover what to do when the topological organization of areas in a particular subject doesn't match the group

# Areal Feature-based Registration Summary

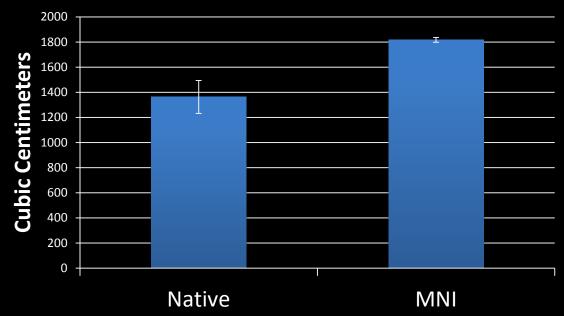
- Folding-based surface alignment alone is only good enough for some cortical areas where folding patterns are consistent
- Area-feature-based alignment offers substantial improvements in group map sharpness and group statistics
- MSM is a highly tunable algorithm that can register many kinds of cortical data (e.g. myelin maps, RSNs, and even binary ROIs)
- The next HCP data release will include cortical data registered with areal feature-based registration (MSMAII)
- Questions about surface registration?

### Lecture Topics

- Contrast neuroanatomical localization in the HCP's CIFTI grayordinates-based neuroimaging analysis paradigm vs traditional volume-based analysis
- The HCP's Minimal Preprocessing Pipelines: Getting from raw images to standard CIFTI grayordinates space
- Cross-subject surface registration based on cortical areal features vs folding patterns
- Removing group average registration drift to allow unbiased spatial comparisons across studies using areal overlap instead of 3D peak activation coordinates
- Reproducibility of HCP data after careful preprocessing

#### <u>Group Registration Drift</u>: Mismatch between the Group Average and the Typical Subject

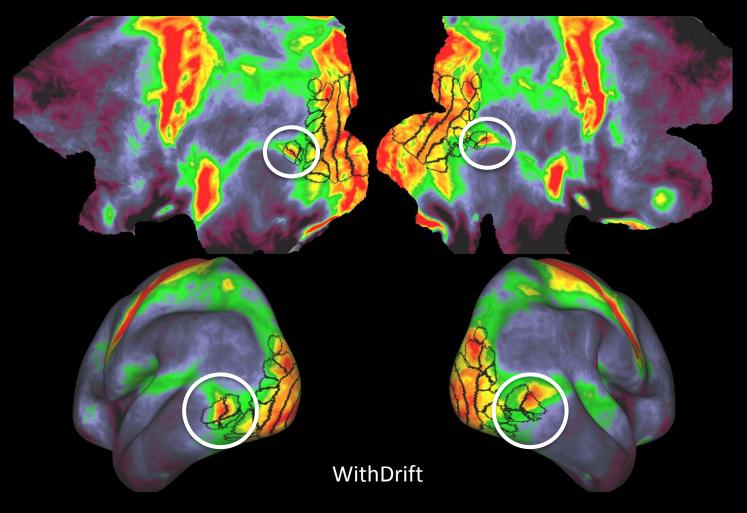
#### HCP 196 Brain Volume



- Example: volume-based alignment of an individual to the standard MNI volume space increases their brain volume an average of 37%
- Volume-based registration reduces individual variability in brain volume (what we want), but increases brain volume on average by 37% (we don't want this)
- When MNI space was created using iterations of registration and averaging, it "drifted" to a 37% larger brain size than the typical individual's brain volume
- This group registration drift is now "baked into" the standard MNI space (the current standard in the field of neuroimaging)
  - Let's not make that mistake again in grayordinates analyses, at least on the surface
- Remove drift by computing the group average registration and concatenating its inverse onto each subject's registration

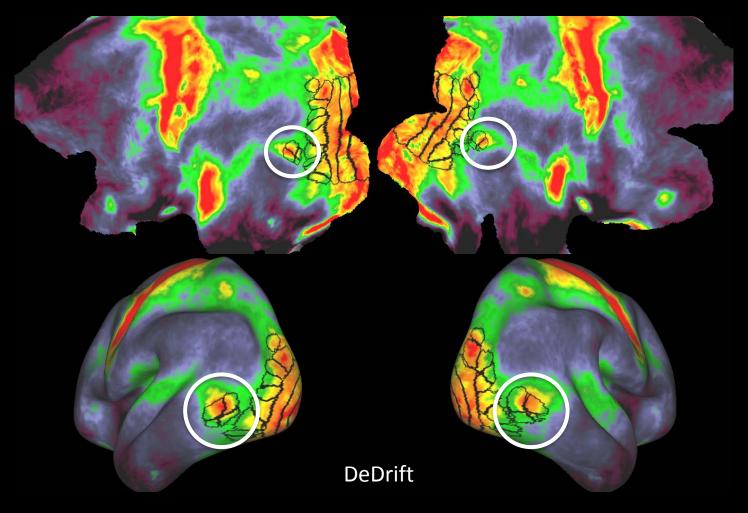
#### Effect of Removing Group Registration Drift on Comparison Between Two Separate Studies

Independent Retinotopic areas and HCP Myelin maps (both registered with MSM, but using different modalities)

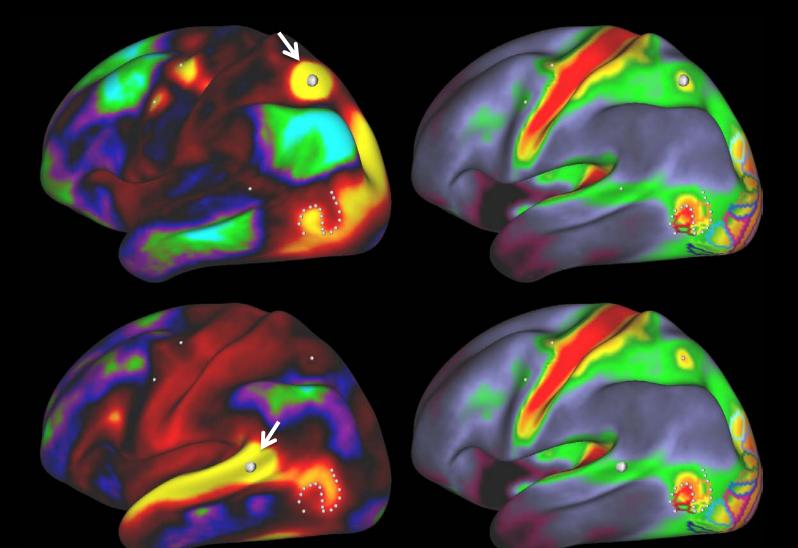


#### Effect of Removing Group Registration Drift on Comparison Between Two Separate Studies

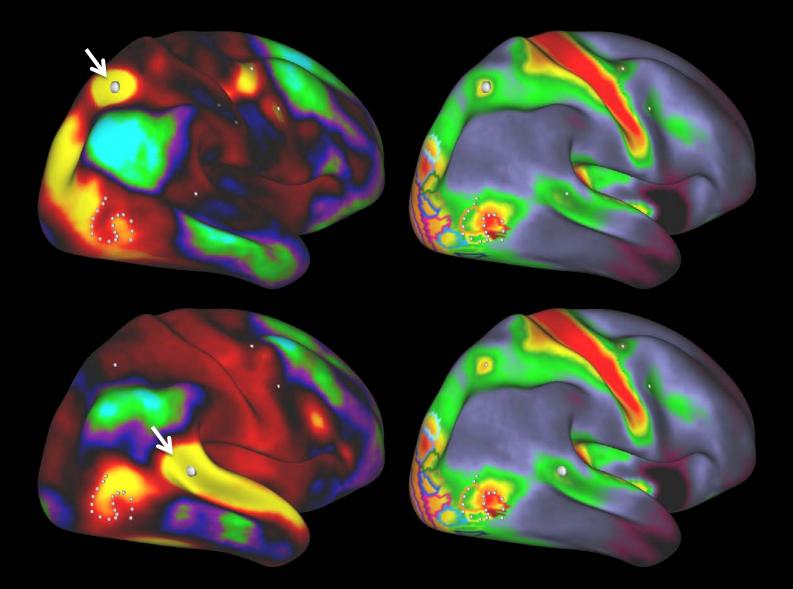
Independent Retinotopic areas and HCP Myelin maps (both registered with MSM, but using different modalities)



#### Cross-study, Cross-modal Boundary Comparisons: Myelin and Resting State vs Retinotopy



#### Cross-study, Cross-modal Boundary Comparisons: Myelin and Resting State vs Retinotopy



# Group Average Registration Drift Summary

- Group average registration drift is when the group average dataset does not match the typical individual subject
  - Often arises from iterative template generation
  - The MNI template is an example
- Drift can be removed by computing the average registration effect and concatinating its inverse onto each subject's registration
  - This keeps the individual registration improvements
- Dedrifting enables precise cross-study comparisons using areal boundaries and overlap
  - If one provides the actual results instead of 3D coordinates
- Questions about dedrifting?

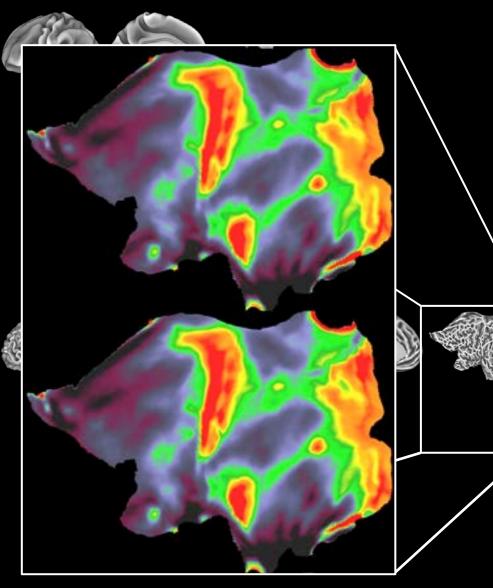
### Lecture Topics

- Contrast neuroanatomical localization in the HCP's CIFTI grayordinates-based neuroimaging analysis paradigm vs traditional volume-based analysis
- The HCP's Minimal Preprocessing Pipelines: Getting from raw images to standard CIFTI grayordinates space
- Cross-subject surface registration based on cortical areal features vs folding patterns
- Removing group average registration drift to allow unbiased spatial comparisons across studies using areal overlap instead of 3D peak activation coordinates
- Reproducibility of HCP data after careful preprocessing

# Reproducibility of HCP data after careful preprocessing: Study Design

- Two groups of 210 subjects (named 210P and 210V) that share no family members
  - We'll use these groups later for parcellation (P) and statistical validation (V)
- Compare three major categories of information:
  - Architectural (myelin map, thickness map, folding maps)
  - Functional (task fMRI contrast maps)
  - Connectivity (resting state network and dense connectome maps)
- For each measure we'll compute the Pearson correlation coefficient between the dense spatial maps of the two groups
- We'll use minimally smoothed or unsmoothed data processed with the HCP minimal preprocessing pipelines, registered with area feature-based registration, and dedrifted

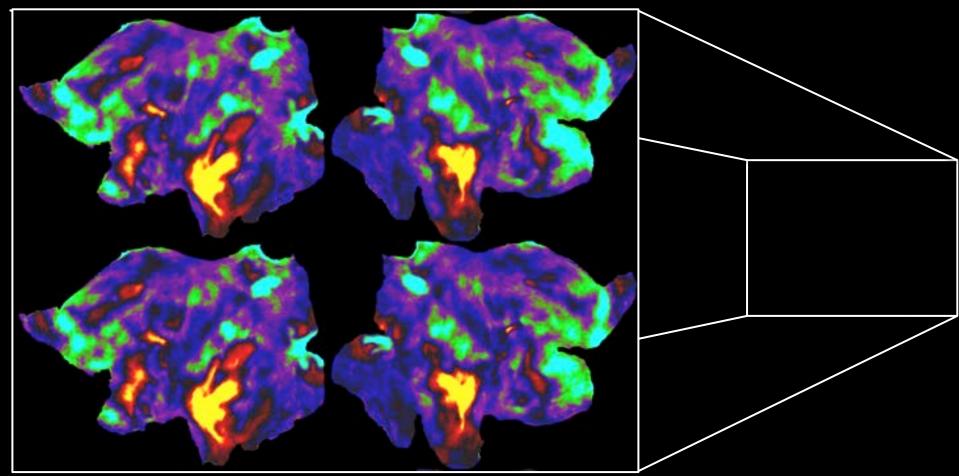
#### Structural Reproducibility: Group Surfaces, Folding, and Architectural Measures



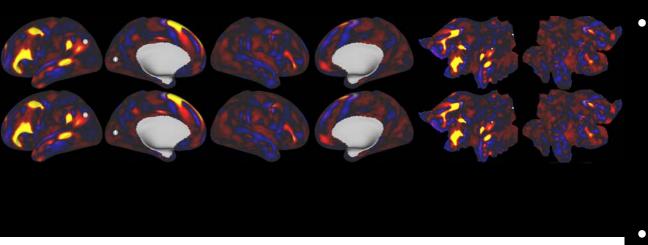
- 210P Group Surface + Folding
  - Left Midthickness
  - Left Inflated
  - Left Flat
- 210V Group Surface + Folding
- Folding Quantitative Comparison
  - Sulc Folding Map r=0.996
  - Curvature Folding Map r=0.979
- Notice how the folding patterns in many regions are blurry after MSMAll registration relative to an individual
  - Comes from poor correlation between folds and cortical areas (e.g. cognitive areas)
  - Remaining sharp folding patterns indicate regions where folds and areas are well correlated (e.g. early sensory areas)
- Architectural Quantitative Comparison
  - Myelin (r=0.998)
  - Thickness (r=0.994)
- Zooming in on the group myelin maps you can see how reproducible the fine spatial detail is

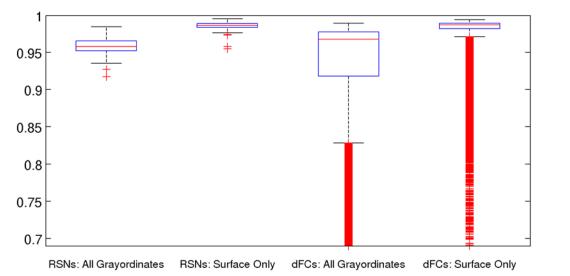
# Functional Reproducibility: tfMRI

- Contrast Beta Maps Scaled from 0.75% to -0.75% BOLD from 210P for Left Inflated,
- And 210V, most Reproducible Contrast (Relational vs Baseline, r=0.995)
- Median Reproducible Contrast (Story vs Baseline, r=0.984)
- Least reproducible contrast (Tools category Average categories, r=0.944), excluding outlier
- Overall reproducibility of all task contrasts for surface only and all grayordinates (little bit lower)
- Again, zooming in we can see how reproducible the fine spatial detail is



# Connectivity Reproducibility: rfMRI





- Resting State Network (RSN) maps are highly reproducible (group ICA d=137, weighted regression in individuals, averaged across subjects)
  - Language Network
  - Its right hemisphere homologue
  - Dense functional connectivity maps (dFCs) are also highly reproducible despite their low CNR
    - Task negative network (yellow) anti-correlated with task positive network (blue)
    - Globally positively correlated visual network
- Across all RSNs and most dFC seed grayordinates reproducibility is high
- Seeds in signal dropout regions are the outliers

# Reproducibility of Carefully Processed Dense HCP Data Summary

- Despite minimal smoothing, the HCP data are highly reproducible across independent groups
  - This is true for structural, tfMRI, and rfMRI modalities
- Fine spatial detail remains group averages of these modalities
- This detail is removed from most regions of the folding data
  - Because we have aligned cortical areas instead of aligning folding patterns
  - Those regions where folds and areas have a consistent relationship continue to have sharp folding patterns
- Again, folding alone is not enough to align cortical areas in most brain regions
- Questions about reproducibility of HCP data?

# One Last Slide

- Process your data carefully (surface for the cortex, volume for subcortical) using the HCP Pipelines and the CIFTI neuroimaging analysis paradigm
- Align subjects using areal features instead of cortical folds
- Remove group average registration drift to enable precise crossstudy comparisons
- Provide the whole study results in standard grayordinates space, not just coordinates, so that overlap and areal boundaries can be compared across studies
- Limit spatial smoothing to avoid mixing across tissue types and brain areas and to preserve the available spatial detail
- Next lecture will be all about multi-modal brain parcellation
  - An application of the above preprocessing refinements to do interesting science
  - Any last questions?

