Fibre Orientation Models & Tractography Analysis

Matteo Bastiani Saad Jbabdi Stam Sotiropoulos

Overview

• Why DTI is not enough?

- Estimating Crossing Fibre Orientations bedpostX Adding spatial information - RubiX
- Probabilistic Tractography probtrackX

• Applications & Connectomes

Overview

• Why DTI is not enough?

- Estimating Crossing Fibre Orientations bedpostX Adding spatial information - RubiX
- Probabilistic Tractography probtrackX

• Applications & Connectomes

Why do we need modelling?

Micro-structure Ex-vivo Electron Microscopy Direct Imaging of Axons Macro-structure Whole-brain In-vivo Imaging Direct Imaging of Water Diffusion => Need a model to infer connections

Ohno et al. 2011

3T Skyra Connectome (32ch Coil, 84 mT/m)

DTI Estimates of Principle Fibre Orientation in WM

 \mathbf{v}_1 map **Principal Diffusion Direction**

Principal Diffusion Direction

Assumption:

Direction of maximum diffusivity (in anisotropic voxels) is an estimate of the major fibre orientation.

But is WM always coherently organised within a voxel?

Unfortunately not, complex fibre patterns (e.g. crossings) are very common at the voxel scale.

Predictions from the tensor model no crossing fibres

Predictions from the tensor model crossing fibres

How good is the DTI Model in regions with crossing fibres?

- In voxels containing two crossing bundles, the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
- In voxels containing three crossing bundles, the tensor ellipsoid is spherical.
- In these areas, DTI \boldsymbol{v}_1 is meaningless and FA is biased.

Uncertainty on DTI Fibre Orientation Estimates

Repeat an acquisition many times and obtain the variability in v_1 from the different datasets.

Cones of uncertainty on DTI v_1

Jones, 2002

Overview

• Why DTI is not enough?

- Estimating Crossing Fibre Orientations bedpostX Adding spatial information - RubiX
- Probabilistic Tractography probtrackX

• Applications & Connectomes

Do we have to use the DTI model to estimate orientations? Not really, many models exist

- Anisotropic tensors (sticks) with isotropic background (ball)
- Fibre Orientations modelled explicitly and separated from isotropic partial volumes

Predictions from the ball and sticks model crossing fibres

DTI vs Ball & Sticks Orientations

DTI

Higher b value gives us more angular contrast!!!

But SNR goes down very quickly with b...

Generalised Parametric Deconvolution Gets best of both worlds by combining multiple shells

Parametric spherical deconvolution:

voxel

- Multi-shell model in bedpostX (model=3).

Allows representation of multiple diffusivities within a voxel (rather than just one). => More accurate model for multi-shell data & partial volume effects.

- Instead of representing a **fibre** compartment as a "stick" (perfectly anisotropic), it has a more realistic description (a "**zeppelin**"). I.e. a very anisotropic compartment, which however has some width.

Width estimated from the data, but constrained through Prior knowledge learned fron data!

Gets best of both worlds

- Sum of Diracs for fODF
- Gamma distribution of diffusivities in the partial volume compartment
- Axially symmetric anisotropic tensor (i.e., "zeppelin") in the Impulse Response kernel
- Bayesian Inference Framework.

Generalised Parametric Deconvolution

Quantifying Uncertainty Bayesian Modelling in bedpostX

- Uncertainty can be quantified from a single data set
- Instead of a single orientation estimate, infer a distribution of orientations in each voxel. (and for every model parameter)

Output in Each voxel = Distributions of Parameters

Visualisation of Orientation Uncertainty in Workbench

*See Practical for various options to visualise these distributions

Overview

• Why DTI is not enough?

- Estimating Crossing Fibre Orientations bedpostX Adding spatial information - RubiX
- Probabilistic Tractography probtrackX

• Applications & Connectomes

Fusing 3T & 7T HCP dMRI

<u>3T</u>

I.25 mm, 3 shells 90 dir / shell (x2) MB3 I00 mT/m

<u>7T</u> I.05 mm, 2 shells 65 dir / shell (x2)

MB2, GRAPPA3

70 mT/m

 3T: Better Angular Contrast, Better SNR =>
better sensiticity to complex fibre pattersns

7T: Better Spatial Resolution

(considering total readout and PSFs, 7T voxels ~40% of 3T voxels)

RubiX - Spherical Deconvolution of dMRI acquired at different spatial resolutions

(Sotiropoulos et al, IEEE TMI 2013)

In deep WM, RubiX can achieve similar level of complexity as 3T, at the 7T resolution grid

(Sotiropoulos et al, ISMRM 2015)

The Need for Speed! ... bedpostx_gpu

- Sampling-based Inference takes very long on dMRI datasets.
- It is even worse for HCP dMRI datasets, which are huge compared to conventional dMRI.
- Do not run bedpostX on a desktop with HCP data, unless you are happy to wait for weeks...
- GPU non-trivial implementations allow massive speed-ups (x150).

Overview

• Why DTI is not enough?

- Estimating Crossing Fibre Orientations bedpostX Adding spatial information - RubiX
- Probabilistic Tractography probtrackX

• Applications & Connectomes

What does tractography offer?

- + non-invasive
- + in-vivo
- + whole brain
- + can address new questions and associate with function & behaviour

Lawes et al. 2008

...But

- realtively low resolution (large bundles)
- indirect (diffusion paths)
- error prone (MRI is noisy)
- difficult to interpret quantitatively

DTI Streamline Tractography

Formally, we solve numerically the differential equation:

Mori S, Neuron 2006

Streamlining reproducibility

-> By following a deterministic orientation estimate per voxel, deterministic tracking will always produce the same deterministic result.

-> But due to uncertainty in the estimates, curves will not perfectly overlap if we repeat an experiment. So, what if we are interested in a spatial distribution describing this path estimate?

Map that shows where results across datasets overlap

Low Reproducibility

High Reproducibility

- We normally have one dataset per subject, not many.

- Probabilistic Tractography as a two-step process:

a) Use DWI data and a model to infer a fibre orientation **and its uncertainty** in each voxel.

 b) Use the estimates and the uncertainty to build a path probability map to a seed
(i.e. it estimates a spatial distribution of possible connections vs a deterministic estimate)

Probabilistic Tractography - Propagating the Uncertainty

Behrens et al, 2003 Parker et al, 2003

- Propagate N streamlines from a seed, but for each propagation step choose randomly an orientation from the underlying distribution.
- Build a spatial distribution of curves that mimics the overlapped results from multiple deterministic tracking on multiple scans

Probabilistic Tractography - Propagating the Uncertainty

Behrens et al, 2003 Parker et al, 2003

Define the degree of overlap at each location B, as:

M:number of streamlines that go through B N: total streamlines generated from A

This is the probability of a curve starting at A and going through B.

Probabilistic Tractography in Multi-Fibre Fields

Parker & Alexander 2003, Behrens et al, 2007

When multiple fibre orientations exist in a voxel, choose the one that is most compatible with the incoming trajectory.

Examples of Probabilistic Tractography in HCP data

The Importance of spatial resolution

1.5 mm

cortico-striatal cortico-spinal cortico-bulbar cortico-thalamic

1.25 mm

Sotiropoulos et al, NeuroImage 2013

Examples of Probabilistic Tractography in HCP data

Route taken by insula-cingulate connection, crossing the centrum semiovale

If one fibre is modelled and we track through a crossing, a) we may not make it through the crossing, b) if we make it, the connectivity index will be relatively low.

Tractography from left pulvinar

Courtesy of Johannes Klein

Examples of Probabilistic Tractography in HCP data Resolving the cerebellar peduncles and the decussation of the SCP

Kirsten van Baarsen & Michiel Kleinnijenhuis

Using Surfaces in Tractography and probtrackX

Using 2D surfaces allow more realistic constraints and seeds in tractography.

No surface constraint

Surface constrained

Overview

• Why DTI is not enough?

- Estimating Crossing Fibre Orientations bedpostX Adding spatial information - RubiX
- Probabilistic Tractography probtrackX

• Applications & Connectomes

Connectional contrast

no contrast on conventional MRI

VL -> M1

MD -> PFC

Behrens et al, 2003 (probabilistic tractography)

Rouiller et al, 1998 (BDA anterograde tracing)

Connectional contrast in the thalamus

Using Tractography to extract "Connectional contrast" in GM

Temporo-parietal junction Lateral Parietal Mars 2012 Mars 2011

Substantia Nigra Menke 2010

Lateral pre-motor Tomassini 2007

Striatum Tziortzi 2013

Broca's area Klein 2007

Insular cortex Cerliani 2012

Medial prefrontal Johansen-Berg 2004

Thalamus Behrens 2003

Amygdala Saygin 2011

Occipital cortex Thiebaut de Schotten 2013

Connectomes: Obtain complehensive "connectivity profiles" from all GM to allow exploratory analysis

Connectivity profiles for ~90k GrayOrdinates

~30K surface vertex coordinates for Left Cortical hemisphere (from WM/GM boundary surface)

~30K surface vertex coordinates for Right Cortical hemisphere (from WM/GM boundary surface)

~30K voxel centre coordinates for Subcortex and Cerebellum

"Dense" Connectomes are huge 90k x 90k Matrices. Each Row is a connectivity profile of each GrayOrdinate.

Options for Connectome Matrices

$ConI=MI+MI^{T}$

All paths starting from A ending at B and starting from B ending at A

Con3=M3

All paths starting from any point C and connect A and B

Pros & Cons of each Option

Con I: Less Gyral bias More path-length dependent

Con3: Less path-length dependnce More Gyral bias

Superficial white matter

Complex fibre architecture close to white/grey matter boundary can bias tractography.

Need to improve:

- Diffusion models (include fibre fanning)

- Tractography algorithms

Some examples of known connections found

Average of 158 subjects Conn3

SMA to motor cortex

Pre-SMA to IFG

Frontal to TPJ

Cortico-Striatal Connections

- They reflect "Connection Strength" (e.g. number of axons connecting two regions)
- But they do also reflect other uninteresting factors, such as:

<u>Connection length</u>: Longer connections have smaller probability than shorter ones (maybe that's anatomically relevant?)

<u>Geometric complexity</u>: Probabilities of connections that go through regions of complex structure will be smaller than connections than go through more coherent regions

<u>Resolution of the spatial grid</u>: Probabilities change if we change the size of "bins" for displaying the spatial histogram

Group Structural (20 subjects - log scale)

Group Functional (20 subjects)

That's all folks