HCP Course 2015

rFMRI background, preprocessing, denoising

Stephen Smith, FMRIB Oxford

Resting-State Networks

- Spatial patterns of correlated temporal dynamics, resembling activation maps
- can be found in FMRI data (BOLD & ASL) obtained under stimulation and in resting data
- often described as having low frequency power spectra

Correlations in spontaneous temporal fluctuations

Activation maps from a finger tapping experiment

Correlation maps from a resting state experiment

Spontaneous correlations = functional connectivity?

- Two areas correlate because they are functionally linked
- Not surprising that this is seen in "resting" data

Spontaneous correlations = functional connectivity?

- Two areas correlate because they are functionally linked
- Not surprising that this is seen in "resting" data
- "functional connectivity" = correlation
 = direct or indirect connection

• "effective connectivity" = direct/causal connection

Spontaneous correlations = functional connectivity?

- Two areas correlate because they are functionally linked
- Not surprising that this is seen in "resting" data
- "functional connectivity" = correlation
 = direct or indirect connection
 - easy to estimate, less meaningful
- "effective connectivity" = direct/causal connection
 - more meaningful, harder to estimate

Popular methods for analysing resting FMRI data

Seed-based correlation

ICA(independent component analysis)

- review papers
 - Calhoun NeuroImage 2008
 - Cole Frontiers Sys Neur 2010

Seed-based correlation

• Different seed locations generate different correlation maps

• Lowe Neurolmage 1998

• Different seed locations generate different correlation maps

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

- ICA
 - Comon Signal Processing 1994
 - Bell Neural Computation 1995
- ICA for FMRI
 - McKeown Human Brain Mapping 1998
- ICA for resting FMRI networks
 - Kiviniemi Neurolmage 2003

- ICA for FMRI software
 - MELODIC in FSL (Beckmann)
 - GIFT (Calhoun)
 - BrainVoyager (Formisano)

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

- ICA
 - Comon Signal Processing 1994
 - Bell Neural Computation 1995
- ICA for FMRI
 - McKeown Human Brain Mapping 1998
- ICA for resting FMRI networks
 - Kiviniemi Neurolmage 2003

- ICA for FMRI software
 - MELODIC in FSL (Beckmann)
 - GIFT (Calhoun)
 - BrainVoyager (Formisano)

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

Good for finding:

- Scanner and physiological artefacts
- Activation
- Resting networks
- ICA
 - Comon Signal Processing 1994
 - Bell Neural Computation 1995
- ICA for FMRI
 - McKeown Human Brain Mapping 1998
- ICA for resting FMRI networks
 - Kiviniemi Neurolmage 2003

- ICA for FMRI software
 - MELODIC in FSL (Beckmann)
 - GIFT (Calhoun)
 - BrainVoyager (Formisano)

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

Good for finding:

- Scanner and physiological artefacts
- Activation
- Resting networks
- ICA
 - Comon Signal Processing 1994
 - Bell Neural Computation 1995
- ICA for FMRI
 - McKeown Human Brain Mapping 1998
- ICA for resting FMRI networks
 - Kiviniemi Neurolmage 2003

- ICA for FMRI software
 - MELODIC in FSL (Beckmann)
 - GIFT (Calhoun)
 - BrainVoyager (Formisano)

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

Good for finding:

- Scanner and physiological artefacts
- Activation
- Resting networks
- ICA
 - Comon Signal Processing 1994
 - Bell Neural Computation 1995
- ICA for FMRI
 - McKeown Human Brain Mapping 1998
- ICA for resting FMRI networks
 - Kiviniemi Neurolmage 2003

- ICA for FMRI software
 - MELODIC in FSL (Beckmann)
 - GIFT (Calhoun)
 - BrainVoyager (Formisano)

Seed-based correlation vs. ICA

Seed-based

- Good: allows you to ask a straightforward question and get an easily interpretable answer
- Bad: only tells you about the seeds you ask about (though see Cohen's gradient-based parcellation)

ICA

- Bad: some components can be hard to interpret, and you may not get a component that clearly relates to the brain-bit you cared about
- Bad: run-run variability in decomposition (but see ICASSO)
- Good: the entire dataset is decomposed into "all" the different networks present

Spatial characteristics

RSNs - multiple grey-matter networks

Human Connectome Project pilot data (7T, I.5mm, 6mins)
 (U Minnesota, E Yacoub & K Ugurbil)

Spatial characteristics

Low-dimensional (~20) ICA gives distinct "resting state networks"

Beckmann Phil Trans Roy Soc B 2005

Correspondence between resting FMRI and task-activation studies

one component from group-ICA on 36-subject resting FMRI

one component from ICA on activation images from 1687 task studies in the San Antonio BrainMap meta-database

High-dimensional (~200) ICA gives a "parcellation"

Temporal characteristics

• Generally described as "low frequency" or "I/f"

Temporal characteristics

- Generally described as "low frequency" or "I/f"
- Split frequency spectrum into four bands and run ICA on each
- Suggests RSNs are broadband processes temporally

- Top: Power spectra from 5 RSNS (TR=0.35s).
- Middle: Spectra suggest RSNs in BOLD are "low frequency" (or "I/f")
- Bottom: Deconvolve HRF in original data now flat up to 0.2Hz

Anti-correlated networks

"Default mode network" - a network that deactivates during many activation studies

- Shulman JCN 1997
- Raichle PNAS 2001

Anti-correlated networks

"Default mode network" and "task-positive network" are anticorrelated in resting data

- Fox PNAS 2005
- Fox J Neurophys 2009

rfMRI artefacts & cleanup

- Structured artefacts much more of a problem for rfMRI than task-fMRI (because it's based on correlating timeseries with each other rather than an "external" timeseries that in general will not be correlated with these confounds)
 - Head motion
 - Cardiac & breathing cycles
 - Scanner artefacts

rfMRI artefacts & cleanup

- Estimate "confound" timeseries; regress these out of the data:
 - External physiology measurements (RETROICOR)
 - rfMRI-data-derived measurements
 - head motion parameters
 - white-matter / CSF / whole-brain mean timeseries
 - ICA artefact component timeseries
- Highpass / lowpass temporal filters
- "Scrubbing" (delete bad timepoints)

temporal filtering

- Highpass temporal filtering
 - E.g., remove frequences < 0.001 Hz
 - Reasonable to remove slowest data drifts
- Lowpass temporal filtering
 - E.g., common to remove frequencies > 0.1Hz
 - May remove useful signal
 - Not guaranteed to remove much artefact
 - Maybe a "last resort" if other options not available

To demean or Not to demean?

- What about "global signal removal" (mean timecourse over whole brain)?
 - Another source of noise that's good to remove ...?
 - But what if it contains some "neural" signals of interest?
 - Makes it hard to interpret whether different networks are positively / negatively correlated
 - Fox (J Neurophysiol, 2009), Murphy (Neurolmage 2009), etc.

FIX (FMRIB's ICA-based X-noiseifier)

Salimi-Khorshidi Neurolmage 2014 Griffanti Neurolmage 2014

- Preprocessing: head motion correction and drift removal
- FSL's ICA with automatic dimensionality estimation
- FIX
 - classify each ICA component (good v bad)
 - Regress bad ICA timecourses & 24 motion parameters out of data
- FIX component classification accuracy:
 - On good multiband data (eg HCP): 99.5%
 - On "standard" EPI: > 95% TPR, 85% TNR

FIX: example artefact component

FIX: example good component

Effect of ICA+FIX cleaning

temporal power spectra

Group-level rfMRI analysis

Group Analysis - Seed-Based

- One seed map per subject
- Simple random-effects cross-subject / cross-group analyses using parametric maps from individual subject seedings.
 Just like task-FMRI GLM cross-subject modelling

 Easy to interpret, and no problems of "correspondence" (do the maps "mean" the same thing in all subjects?) as long as no registration confounds

Group Analysis - ICA

 For any RSN of interest, take each subject's map corresponding to that RSN, somehow

 Simple random-effects cross-subject / cross-group analyses using RSN maps from individual subject seedings.
 Just like with seed-based

ICA-based methodology for multi-subject RSN analysis

ICA-based methodology for multi-subject RSN analysis

- Why not just run ICA on each subject separately?
 - Correspondence problem (of RSNs across subjects)
 - Different splittings sometimes caused by small changes in the data (naughty ICA!)

ICA-based methodology for multi-subject RSN analysis

- Why not just run ICA on each subject separately?
 - Correspondence problem (of RSNs across subjects)
 - Different splittings sometimes caused by small changes in the data (naughty ICA!)

- Instead start with a "group-average" ICA
 - But then need to relate group maps back to the individual subjects
 - (Although this approach is less good than single-subject ICA at removing/ignoring session-specific noise)

ICA models for RSN analysis

ICA models for RSN analysis

each ICA component comprises:

🔯 spatial map & timecourse 🤼

Multi-Session or Multi-Subject ICA: Concatenation approach

each ICA component comprises:

spatial map & timecourse (that can be split up into subject-specific chunks) m

• dr_stage I_subject[#SUB].txt - the timeseries outputs of stage I of the dual-regression.

• dr_stage I_subject[#SUB].txt - the timeseries outputs of stage I of the dual-regression.

• dr_stage I_subject[#SUB].txt - the timeseries outputs of stage I of the dual-regression.

• dr_stage2_subject[#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

• dr_stage I_subject[#SUB].txt - the timeseries outputs of stage I of the dual-regression.

• dr_stage2_subject[#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

• **dr_stage2_ic[#ICA].nii.gz** - the re-organised parameter estimate images

. . .

• dr_stage | _subject[#SUB].txt - the timeseries outputs of stage I of the dual-regression.

dr_stage2_subject[#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

dr_stage2_ic[#ICA].nii.gz - the re-organised parameter estimate images

dr_stage3_ic[#ICA]_tstat[#CON].nii.gz the output from randomise (corrected for mc across voxels but not across

#components!!)

Altered functional connectivity in young, healthy carriers of APOE-£4

HCP

Signal & Noise Considerations

- Main SNR effect (when reducing TR) is signal loss due to reduced T₁-relaxation period
- This loss almost balanced by the sqrt(N) increase in effective SNR

- Increased DoF and temporal sampling
- Non-Gaussianity
- Non-stationarity
- Interesting temporal dynamics

HCP rfMRI pre-processing summary

- 4D rfMRI data from spatial ("minimal") pre-processing, in both volumetric and grayordinate forms
- Weak highpass temporal filtering (>2000s FWHM) applied to both, giving slow drift removal
- MELODIC ICA is applied to volumetric data; artefact components are identified using FIX
- Artefact and motion-related timecourses are regressed out of both volumetric and grayordinate data
- Ongoing investigations into also possibly applying:
 - further motion cleanup / scrubbing
 - further removal of physiological confounds based on physiological monitoring data
 - removal of globally-related signals.

non-imaging individual

subject measures (SMs)

age, IQ, sex, etc.

netmats MegaTrawl

data release