HCP Course 2015

rFMRI background, preprocessing, denoising
Stephen Smith, FMRIB Oxford

Resting-State Networks

- Spatial patterns of correlated temporal dynamics, resembling activation maps
- can be found in FMRI data (BOLD \& ASL) obtained under stimulation and in resting data
- often described as having low frequency power spectra

Correlations in spontaneous temporal fluctuations

Activation maps from a finger tapping experiment

Correlation maps from a resting state experiment

- Biswal MRM 1995

Spontaneous correlations = functional connectivity?

- Two areas correlate because they are functionally linked
- Not surprising that this is seen in "resting" data

Spontaneous correlations = functional connectivity?

- Two areas correlate because they are functionally linked
- Not surprising that this is seen in "resting" data
- "functional connectivity" = correlation
$=$ direct or indirect connection
- "effective connectivity" = direct/causal connection

Spontaneous correlations = functional connectivity?

- Two areas correlate because they are functionally linked
- Not surprising that this is seen in "resting" data
- "functional connectivity" = correlation
= direct or indirect connection
- easy to estimate, less meaningful
- "effective connectivity" = direct/causal connection
- more meaningful, harder to estimate

Popular methods for analysing resting FMRI data

- Seed-based correlation

- ICA(independent component analysis)

- Calhoun Neurolmage 2008
- Cole Frontiers Sys Neur 2010
- Seed-based correlation

- Different seed locations generate different correlation maps

- Lowe Neurolmage $/ 998$
- Seed-based correlation

- Different seed locations generate different correlation maps

- Lowe Neurolmage I998

- van den Heuvel HBM 2010

ICA

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

- ICA
- Comon Signal Processing 1994
- Bell Neural Computation I995
- ICA for FMRI
- McKeown Human Brain Mapping I998
- ICA for resting FMRI networks
- Kiviniemi Neurolmage 2003
- ICA for FMRI - software
- MELODIC in FSL (Beckmann)
- GIFT (Calhoun)
- BrainVoyager (Formisano)

ICA

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

- ICA
- Comon Signal Processing 1994
- Bell Neural Computation I995
- ICA for FMRI
- McKeown Human Brain Mapping I998
- ICA for resting FMRI networks
- Kiviniemi Neurolmage 2003
- ICA for FMRI - software
- MELODIC in FSL (Beckmann)
- GIFT (Calhoun)
- BrainVoyager (Formisano)

ICA

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

Good for finding:

- Scanner and physiological artefacts
- Activation
- Resting networks
- ICA
- Comon Signal Processing 1994
- Bell Neural Computation I995
- ICA for FMRI
- McKeown Human Brain Mapping I998
- ICA for resting FMRI networks
- Kiviniemi Neurolmage 2003
- ICA for FMRI software
- MELODIC in FSL (Beckmann)
- GIFT (Calhoun)
- BrainVoyager (Formisano)

ICA

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

Good for finding:

- Scanner and physiological artefacts
- Activation
- Resting networks
- ICA
- Comon Signal Processing 1994
- Bell Neural Computation I995
- ICA for FMRI
- McKeown Human Brain Mapping I998
- ICA for resting FMRI networks
- Kiviniemi Neurolmage 2003
- ICA for FMRI software
- MELODIC in FSL (Beckmann)
- GIFT (Calhoun)
- BrainVoyager (Formisano)

ICA

ICA decomposes data into a set of distinct spatial maps, each with its own distinct timecourse

Good for finding:

- Scanner and physiological artefacts
- Activation
- Resting networks
- ICA
- Comon Signal Processing 1994
- Bell Neural Computation I995
- ICA for FMRI
- McKeown Human Brain Mapping I998
- ICA for resting FMRI networks
- Kiviniemi Neurolmage 2003

- ICA for FMRI software
- MELODIC in FSL (Beckmann)
- GIFT (Calhoun)
- BrainVoyager (Formisano)

Seed-based correlation vs. ICA

- Seed-based
- Good: allows you to ask a straightforward question and get an easily interpretable answer
- Bad: only tells you about the seeds you ask about (though see Cohen's gradient-based parcellation)
- ICA
- Bad: some components can be hard to interpret, and you may not get a component that clearly relates to the brain-bit you cared about
- Bad: run-run variability in decomposition (but see ICASSO)
- Good: the entire dataset is decomposed into "all" the different networks present

Spatial characteristics

- RSNs - multiple grey-matter networks

- Human Connectome Project pilot data (7T, I.5mm, 6mins) (U Minnesota, E Yacoub \& K Ugurbil)

Spatial characteristics

Low-dimensional (~20) ICA gives distinct"resting state networks"

medial visual				(b) $x=-13$		
auditory				(d) $x=1$		
default mode						
right frontoparietal				(h) $x=-45$		

- Beckmann Phil Trans Roy Soc B 2005

Correspondence between resting FMRI and task-activation studies

one component from group-ICA on 36-subject resting FMRI one component from ICA on activation images from 1687 task studies in the San Antonio BrainMap meta-database

- Smith PNAS 2009

High-dimensional (~200) ICA gives a "parcellation"

Temporal characteristics

- Generally described as "low frequency" or"I/f"

- Niazy Prog Brain Research 20II

Temporal characteristics

- Generally described as "low frequency" or "I/f"
- Split frequency spectrum into four bands and run ICA on each
- Suggests RSNs are broadband processes temporally

- Top: Power spectra from 5 RSNS (TR=0.35s).
- Middle: Spectra suggest RSNs in BOLD are "low frequency" (or "I/f")
- Bottom: Deconvolve HRF in original data - now flat up to 0.2 Hz

- Niazy Prog Brain Research 20II

Anti-correlated networks

"Default mode network" - a network that deactivates during many activation studies

- Shulman JCN 1997
- Raichle PNAS 200I

Anti-correlated networks

"Default mode network" and "task-positive network" are anticorrelated in resting data

- Fox PNAS 2005
- Fox J Neurophys 2009

rfMRI artefacts \& cleanup

- Structured artefacts much more of a problem for rfMRI than task-fMRI (because it's based on correlating timeseries with each other rather than an "external" timeseries - that in general will not be correlated with these confounds)
- Head motion
- Cardiac \& breathing cycles
- Scanner artefacts

rfMRI artefacts \& cleanup

- Estimate "confound" timeseries; regress these out of the data:
- External physiology measurements (RETROICOR)
- rfMRI-data-derived measurements
- head motion parameters
- white-matter / CSF / whole-brain mean timeseries
- ICA artefact component timeseries
- Highpass / lowpass temporal filters
- "Scrubbing" (delete bad timepoints)

temporal filtering

- Highpass temporal filtering
- E.g., remove frequences $<0.00 \mathrm{IHz}$
- Reasonable to remove slowest data drifts
- Lowpass temporal filtering
- E.g., common to remove frequencies $>0.1 \mathrm{~Hz}$
- May remove useful signal
- Not guaranteed to remove much artefact
- Maybe a "last resort" if other options not available

To demean or Not to demean?

- What about "global signal removal" (mean timecourse over whole brain)?
- Another source of noise that's good to remove ... ?
- But what if it contains some "neural" signals of interest?
- Makes it hard to interpret whether different networks are positively / negatively correlated
- Fox (J Neurophysiol, 2009), Murphy (Neurolmage 2009), etc.

FIX (FMRIB’s ICA-based X-noiseifier)

Salimi-Khorshidi Neurolmage 2014
Griffanti Neurolmage 2014

- Preprocessing: head motion correction and drift removal
- FSL's ICA with automatic dimensionality estimation
- FIX
- classify each ICA component (good v bad)
- Regress bad ICA timecourses \& 24 motion parameters out of data
- FIX component classification accuracy:
- On good multiband data (eg HCP): 99.5\%
- On "standard" EPI: > 95\% TPR, 85\% TNR

FIX: example artefact component

FIX: example good component

Effect of ICA+FIX cleaning

temporal power spectra

	uncleaned ICA+FIX + motion cleaned
0	0.7 Hz

raw data (multiband 6) + preprocessing

+ ICA+FIX

A

raw data (multiband 6) + preprocessing

+ ICA+FIX

A

Group-level rfMRI analysis

Group Analysis - Seed-Based

- One seed map per subject
- Simple random-effects cross-subject / cross-group analyses using parametric maps from individual subject seedings. Just like task-FMRI GLM cross-subject modelling
- Easy to interpret, and no problems of "correspondence" (do the maps "mean" the same thing in all subjects?) as long as no registration confounds

Group Analysis - ICA

- For any RSN of interest, take each subject's map corresponding to that RSN, somehow
- Simple random-effects cross-subject / cross-group analyses using RSN maps from individual subject seedings. Just like with seed-based

ICA-based methodology

 for multi-subject RSN analysis
ICA-based methodology for multi-subject RSN analysis

- Why not just run ICA on each subject separately?
- Correspondence problem (of RSNs across subjects)
- Different splittings sometimes caused by small changes in the data (naughty ICA!)

ICA-based methodology for multi-subject RSN analysis

- Why not just run ICA on each subject separately?
- Correspondence problem (of RSNs across subjects)
- Different splittings sometimes caused by small changes in the data (naughty ICA!)
- Instead - start with a "group-average" ICA
- But then need to relate group maps back to the individual subjects
- (Although - this approach is less good than single-subject ICA at removing/ignoring session-specific noise)

ICA models for RSN analysis

Single-Session ICA
each ICA component comprises:
2 spatial map \& timecourse

ICA models for RSN analysis

Single-Session ICA
each ICA component comprises:
© spatial map \& timecourse

Multi-Session or Multi-Subject ICA: Concatenation approach
each ICA component comprises:
Q spatial map \& timecourse (that can be split up into subject-specific chunks)

dual regression

dual regression

dual regression

dual regression

- dr_stage I_subject[\#SUB].txt - the timeseries outputs of stage I of the dual-regression.

- dr_stage2_subject[\#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

dual regression

- dr_stage I_subject[\#SUB].txt - the timeseries outputs of stage I of the dual-regression.

- dr_stage2_subject[\#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

- dr_stage2_ic[\#ICA].nii.gz - the re-organised parameter estimate images

dual regression

- dr_stage I_subject[\#SUB].txt - the timeseries outputs of stage I of the dual-regression.

- dr_stage2_subject[\#SUB].nii.gz - the spatial maps outputs of stage 2 of the dual-regression.

- dr_stage2_ic[\#ICA].nii.gz - the re-organised parameter estimate images
- dr_stage3_ic[\#ICA]_tstat[\#CON].nii.gz the output from randomise
(corrected for mc across voxels but not across \#components!!)

Altered functional connectivity in young, healthy carriers of APOE- 84

HCP

Signal \& Noise Considerations

- Main SNR effect (when reducing TR) is signal loss due to reduced T_{1}-relaxation period
- This loss almost balanced by the sqrt(N) increase in effective SNR

- Increased DoF and temporal sampling
- Non-Gaussianity
- Non-stationarity
- Interesting temporal dynamics

HCP rfMRI pre-processing summary

- 4D rfMRI data from spatial ("minimal") pre-processing, in both volumetric and grayordinate forms
- Weak highpass temporal filtering (>2000s FWHM) applied to both, giving slow drift removal
- MELODIC ICA is applied to volumetric data; artefact components are identified using FIX
- Artefact and motion-related timecourses are regressed out of both volumetric and grayordinate data
- Ongoing investigations into also possibly applying:
- further motion cleanup / scrubbing
- further removal of physiological confounds based on physiological monitoring data
- removal of globally-related signals.

HCP rfMRI data
processing flowchart
and data release info
HCP rfMRI data
processing flowchart
and data release info
HCP rfMRI data
processing flowchart
and data release info

[^0]

HCP rfMRI data
processing flowchart
and data release info
\qquad
解
 （2） \square \square \square
 \square

.
(

．
\square
\square
\square
\qquad

Abstract

\square

 I

\square

\qquad
\qquad
\qquad
\square \square 4正

 \square元 \square
 （ \square

\square \square 2元
正 正 \square －
 \square路
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

HCP rfMRI data

 processing flowchart and data release info

HCP rfMRI data

 processing flowchart and data release infogroup average functional connectivity

rfMRI pre-processed 4D
data release

HCP rfMRI data

 processing flowchart and data release info

[^1]data release

HCP rfMRI data

 processing flowchart and data release info

HCP rfMRI data

 processing flowchart and data release infonon-imaging individual
subject measures (SMs) age, $I Q$, sex, etc.
family structure (twin pairings, etc.)
predict SMs from netmats \& estimate netmat heritability

[^0]: $+$

[^1]: rfMRI pre-processed 4D

