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Resting-State Networks

® Spatial patterns of correlated temporal dynamics, resembling
activation maps

® can be found in FMRI data (BOLD & ASL) obtained under
stimulation and in resting data

® often described as having low frequency power spectra



Correlations in spontaneous temporal fluctuations

Activation maps from a Correlation maps from a
finger tapping experiment resting state experiment

e Biswal MRM 1995



Spontaneous correlations = functional connectivity!?

* Two areas correlate because they are functionally linked
* Not surprising that this is seen in “resting’’ data




Spontaneous correlations = functional connectivity!?

* Jwo areas correlate because they are functionally linked
* Not surprising that this is seen in “resting’”’ data

correlation
direct or indirect connection

e “functional connectivity”

o “effective connectivity” = direct/causal connection

e Friston HBM 1994



Spontaneous correlations = functional connectivity!?

® easy to estimate, less meaningful

* more meaningful, harder to estimate




Popular methods for analysing resting FMRI data

e Seed-based correlation

* review papers
e Calhoun Neurolmage 2008
e Cole Frontiers Sys Neur 2010



 Lowe Neurolmage 1998



 Lowe Neurolmage 1998




ICA

ICA decomposes data into a set

of distinct spatial maps, each with |
its own distinct timecourse
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ICA

ICA decomposes data into a set

of distinct spatial maps, each with |
its own distinct timecourse

ol
-

:
:

e ICA

 Comon Signal Processing 1994
e Bell Neural Computation 1995

e |CA for FMRI e |CA for FMRI - software
e McKeown Human Brain Mapping 1998 e MELODIC in FSL (Beckmann)
e |CA for resting FMRI networks e GIFT (Calhoun)

e Kiviniemi Neurolmage 2003 * BrainVoyager (Formisano)



cCA [T
— |
ICA decomposes data into a set : B, A
of distinct spatial maps, each with E! ak
its own distinct timecourse ¥ i o
Good for finding:
* Scanner and physiological artefacts
e Activation
* Resting networks
e ICA
 Comon Signal Processing 1994
e Bell Neural Computation 1995
e |CA for FMRI e |CA for FMRI software
e McKeown Human Brain Mapping 1998 e MELODIC in FSL (Beckmann)
e |CA for resting FMRI networks e GIFT (Calhoun)

e Kiviniemi Neurolmage 2003 * BrainVoyager (Formisano)



- |
ICA decomposes data into a set 13 | A
of distinct spatial maps, each with :‘35 k.
its own distinct timecourse g e

Good for finding:

* Scanner and physiological artefacts
e Activation

* Resting networks

e ICA

 Comon Signal Processing 1994
e Bell Neural Computation 1995

e |CA for FMRI e |CA for FMRI software
e McKeown Human Brain Mapping 1998 e MELODIC in FSL (Beckmann)
e |CA for resting FMRI networks e GIFT (Calhoun)

e Kiviniemi Neurolmage 2003 * BrainVoyager (Formisano)



- |
ICA decomposes data into a set 13 | A
of distinct spatial maps, each with :‘35 k.
its own distinct timecourse g e

Good for finding:

* Scanner and physiological artefacts
e Activation

* Resting networks

e ICA

 Comon Signal Processing 1994
e Bell Neural Computation 1995

e |CA for FMRI e |CA for FMRI software
e McKeown Human Brain Mapping 1998 e MELODIC in FSL (Beckmann)
e |CA for resting FMRI networks e GIFT (Calhoun)

e Kiviniemi Neurolmage 2003 * BrainVoyager (Formisano)



Seed-based correlation vs. ICA
® Seed-based

® Good:allows you to ask a straightforward question and get
an easily interpretable answer

® Bad: only tells you about the seeds you ask about (though
see Cohen’s gradient-based parcellation)

o |CA

® Bad:some components can be hard to interpret, and you
may not get a component that clearly relates to the brain-bit
you cared about

® Bad: run-run variability in decomposition (but see ICASSO)

® Good: the entire dataset is decomposed into “all” the
different networks present



Spatial characteristics

® RSNs - multiple grey-matter networks

® Human Connectome Project pilot data (7T, |.5mm, 6mins)
(U Minnesota, E Yacoub & K Ugurbil)



Spatial characteristics

Low-dimensional (~20) ICA gives distinct “resting state networks”

medial lateral
visual visual
. sensori-
auditory
motor
default .
executive
mode
right fronto- left fronto-
parietal parietal

 Beckmann Phil Trans Roy Soc B 2005



Correspondence between resting FMRI and task-activation studies

one component one component from ICA

from group-ICA  on activation images from |687
on 36-subject task studies in the San Antonio
resting FMRI BrainMap meta-database

e Smith PNAS 2009



High-dimensional (~200) ICA gives a “parcellation”
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Temporal characteristics

* Generally described as “low frequency” or “|/f”
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Temporal characteristics

* Generally described as “low frequency” or “|/f”

e Split frequency spectrum into four bands and run ICA on each
® Suggests RSNs are broadband processes temporally
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power

power (deconvolved)

e Top: Power spectra from 5 RSNS (TR=0.35s).
e Middle: Spectra suggest RSNs in BOLD are “low frequency” (or “1/f”)
 Bottom: Deconvolve HRF in original data - now flat up to 0.2Hz
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Anti-correlated networks

“Default mode network” - a network that

deactivates during many activation studies * Shulman JCN 1997
e Raichle PNAS 2001




Anti-correlated networks

“task-
positive”
network

default
mode
network

“Default mode network”™ and “task-positive

network” are anticorrelated in resting data  ° fox PNAS 2005
* Fox | Neurophys 2009




rfMRI artefacts & cleanup

® Structured artefacts much more of a problem for rfMRI
than task-fMRI  (because it’s based on correlating timeseries
with each other rather than an “external” timeseries - that in
general will not be correlated with these confounds)

® Head motion
® (Cardiac & breathing cycles

® Scanner artefacts



rfMRI artefacts & cleanup

® Estimate “confound” timeseries; regress these out of the
data:

® External physiology measurements (RETROICOR)
® rfMRI-data-derived measurements
® head motion parameters
® white-matter / CSF / whole-brain mean timeseries
® |CA artefact component timeseries
® Highpass / lowpass temporal filters

® “Scrubbing” (delete bad timepoints)



temporal filtering

® Highpass temporal filtering
® E.g,remove frequences < 0.00] Hz

® Reasonable to remove slowest data drifts

® | owpass temporal filtering
® E.g.,common to remove frequencies > 0.1 Hz
® May remove useful signal
® Not guaranteed to remove much artefact

® Maybe a “last resort” if other options not available



To demean or Not to demean?

® What about “global signal removal” (mean timecourse over
whole brain)?

® Another source of noise that’s good to remove ...?
® But what if it contains some “neural” signals of interest?

® Makes it hard to interpret whether different networks are
positively / negatively correlated

® Fox (] Neurophysiol, 2009), Murphy (Neurolmage 2009), etc.



FIX (FMRIB’s ICA-based X-noiseifier)

Salimi-Khorshidi Neurolmage 2014
Griffanti Neurolmage 2014

* Preprocessing: head motion correction and drift removal
* FSLs ICA with automatic dimensionality estimation
* FIX

* classify each ICA component (good v bad)

* Regress bad ICA timecourses & 24 motion
parameters out of data

* FIX component classification accuracy:

* On good multiband data (eg HCP): 99.5%
* On “standard” EPl: > 95% TPR, 85% TNR



FIX: example artefact component
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FIX: example good component
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Effect of ICA+FIX cleaning
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raw data (multiband 6) + preprocessing + |CA+FIX




raw data (multiband 6) + preprocessing + |CA+FIX




Group-level rfMRI analysis



Group Analysis - Seed-Based

® One seed map per subject

® Simple random-effects cross-subject / cross-group analyses
using parametric maps from individual subject seedings.
Just like task-FMRI GLM cross-subject modelling

® FEasy to interpret,and no problems of “correspondence” (do
the maps “mean” the same thing in all subjects?) as long as
no registration confounds



Group Analysis - ICA

® For any RSN of interest, take each subject’s map
corresponding to that RSN, somehow

® Simple random-effects cross-subject / cross-group analyses
using RSN maps from individual subject seedings.
Just like with seed-based



|CA-based methodology
for multi-subject RSN analysis



|CA-based methodology
for multi-subject RSN analysis

® Why not just run ICA on each subject separately!?
® Correspondence problem (of RSNs across subjects)

® Different splittings sometimes caused by small changes in
the data (naughty ICA!)



|CA-based methodology
for multi-subject RSN analysis

® Why not just run ICA on each subject separately!?
® Correspondence problem (of RSNs across subjects)

® Different splittings sometimes caused by small changes in
the data (naughty ICA!)

® |nstead - start with a “group-average” |[CA

® But then need to relate group maps back to the individual
subjects

® (Although - this approach is less good than single-subject
ICA at removing/ignoring session-specific noise)



ICA models for RSN analysis

.
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each ICA component comprises: FMRI data S El spatial maps l
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ICA models for RSN analysis

.

(
Single-Session ICA _— - B s -
each ICA component comprises: FMRI data - X E‘ spatial maps
spatial map & timecourse
.
( space 1<
Multi-Session or Multi-Subject ICA: | 3
: — R 3 -
Concatenation approach FMRI data 1 spatial maps
\ Y
each ICA component comprises: g | 5
spatial map & timecourse
. . . . FMRI data 2
(that can be split up into subject-specific  y e
chunks) ‘ ‘ ‘ ‘ : .
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dual regression
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dual regression

#components

time courses
| netmats

syuauodwo

* dr_stagel_subject[#SUB].txt - the timeseries :
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dual regression

) #components time
time

dr_stagel_subject[#SUB].txt - the timeseries *| < : S § | ime courses _—
outputs of stage | of the dual-regression. Z | = 35 |x

o

3 >0

— >
dr_stage2_subject[#SUB].nii.gz - the spatial ;| evr| | | 2. . spatial
maps outputs of stage 2 of the dual-regression. data | | ~| &7 maps |

dr_stage2_ic[#ICA].nii.gz - the re-organised
parameter estimate images

dr_stage3_ic[#ICA]_tstat[#CON].nii.gz - { ‘L. '\
the output from randomise H ] }’J

(corrected for mc across voxels but not across
#components!!)




Altered functional connectivity in
young, healthy carriers of APOE-¢4
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* Main SNR effect (when reducing TR) is signal loss due to

Signal & Noise Considerations

reduced T |-relaxation period

* This loss almost balanced by the sqrt(N) increase in
effective SNR
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SIRI-MBI|

*|ncreased DoF and
temporal sampling

* Non-Gaussianity
* Non-stationarity

*nteresting temporal
dynamics



HCP rfMRI pre-processing summary

* 4D rfMRI data from spatial (“minimal”) pre-processing, in both volumetric
and grayordinate forms

* Weak highpass temporal filtering (>2000s FWHM) applied to both, giving
slow drift removal

e MELODIC ICA is applied to volumetric data; artefact components are
identified using FIX

* Artefact and motion-related timecourses are regressed out of both
volumetric and grayordinate data

* Ongoing investigations into also possibly applying:
e further motion cleanup / scrubbing
e further removal of physiological confounds based on physiological
monitoring data
* removal of globally-related signals.
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HCP rfMRI data
processing flowchart
and data release info

group average functional connectivity
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data release




HCP rfMRI data
processing flowchart
and data release info

group average functional connectivity
data release
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HCP rfMRI data
processing flowchart
and data release info

group average functional connectivity
data release
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HCP rfMRI data
prOCeSSinQ flowchart non-imaging individual neima’s Ir\gfgszaw’
and data release info subject measures (SMs)

age, 1Q, sex, etc. -

predict SMs from netmats &
estimate netmat heritability

family structure |=%
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