
 
Figure 1. The dataset for the running example is excerpted at left, arranged 

in the typical manner for MVPA. The boxes at right introduce the dataset 

representation used in later figures. In these boxes the task labels sent to the 
classifier are shown in circles. Since this is the true-labeled data, the circled 

task labels match those shown in the data table. 
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Abstract—Permutation tests are widely used for significance 

testing in classification-based fMRI analyses, but the precise 

manner of relabeling varies, and is generally non-trivial for 

MVPA because of the complex data structure. Here, we 

describe two common means of carrying out permutation tests. 

In the first, which we call the “dataset-wise” scheme, the 

examples are relabeled prior to conducting the cross-

validation, while in the second, the “fold-wise” scheme, each 

fold of the cross-validation is relabeled independently. While 

the dataset-wise scheme maintains more of the true dataset’s 

structure, additional work is needed to determine which 

method should be preferred in practice, since the two methods 

often result in different null distributions (and so p-values). 

Keywords- fMRI; classification; significance; permutation; 

MVPA; cross-validation; 

I.  INTRODUCTION 

Permutation tests are often preferred for significance 
testing in fMRI multivariate pattern analysis (MVPA, also 
called multi-voxel pattern analysis or multivariate pattern 
classification) application studies, since MVPA generally 
involves dataset characteristics that violate the assumptions 
needed for parametric tests, or hypotheses unsuitable for 
traditional methods [1, 2]. 

Despite this widespread use, the optimum procedures 
have not been determined. There is considerable ambiguity 
and numerous experimenter degrees in freedom in how 
permutation procedures are implemented. For example, how 
should the relabelings be done, given the complex cross-
validation (CV) and dependency structures (e.g. similarity 
between volumes collected within the same scanner run) 
present in fMRI data?  

In practice, the statistical testing is usually only briefly 
described, stating that permutation testing was used, perhaps 
also giving the number of relabelings. These vague 
methodological descriptions, combined with complex 
analyses and multiple reasonable implementations, have led 
to a proliferation of permutation schemes. Here we describe 
two common permutation strategies, which we refer to as the 
“dataset-wise” and “fold-wise” schemes. Given the lack of a 
fixed terminology for describing MVPA permutation testing, 
we use a concrete example and numerous illustrations to 
demonstrate the two schemes in the hope that the figures will 
bridge terminological shortcomings. 

II. RUNNING EXAMPLE 

We will describe the dataset-wise and fold-wise 
permutation schemes using a running example of a minimal, 
yet representative, task-based classification analysis for a 
single subject. This person completed three runs of fMRI 
scanning, each of which contained three blocks each of two 
different tasks. These task blocks were presented with 
sufficient rest intervals to allow the task-related BOLD 
signal to return to baseline, making it reasonable to assume 
that the task labels can be permuted [2, 3]. We further 
assume that the image preprocessing (motion correction, 
etc.) was adequate to remove most linear trends and 
uninteresting signals. Temporal compression [4] was 
performed, so that each task block is represented in the final 
dataset as a single labeled vector of voxel values (Fig. 1). 
There are n entries in each vector, corresponding to the 
voxels falling within an anatomically-defined region of 
interest (ROI). We assume that n is small enough (e.g. 100) 
that further feature selection is not necessary. 



 
Figure 2. Schematic for determining accuracy. Each rectangle represents 

the true-labeled data for a run (Fig. 1). Thin lines indicate which runs make 

up the training set for each fold (i.e. partitioning on the runs), while thick 
arrows indicate the test set. The final accuracy (“mean acc.”) is calculated 

by averaging the accuracies from each of the three cross-validation folds.  

 

 
Figure 4. Single iteration of a dataset-wise permutation scheme, when 

both the training and testing sets are relabeled. The classifier sees the 

permuted task labels (colored strips), rather than the true task labels. 

 

 

 
Figure 3. The twenty possible ways to order the task labels for a single 

run. These colors are used for the rearrangments in subsequent figures. 

 

 







































We wish to use a classification algorithm (e.g. linear 
support vector machines) to distinguish the two tasks, using 
all n voxels listed in the dataset. For simplicity, we will 
partition the data on the runs (three-fold CV): leave out one 
run, train on the two remaining runs, and repeat, leaving out 
each run in turn. The three test set accuracies are then 
averaged to obtain the overall classification accuracy (Fig. 
2), which, if greater than chance, we interpret as indicating 
that the voxels’ BOLD varied with task.  

III. PERMUTATION TESTING 

All permutation tests involve assigning new labels to the 
observations. For the current running example, as in most 
task-based MVPA, this entails randomly shuffling the task 
labels, then retraining the classifier, in order to compare the 
mean accuracy obtained with the true data labels with the 
accuracies obtained using the permuted labels [5]. But how 
exactly should the task labels be shuffled?  

It is generally agreed that stratified relabeling should be 
used: the label permutations need to reflect the variance 
structure of the data. For the running example, we should 
thus permute the labels within each individual run (six rows, 
two task types, 6C3 = 20 possible labelings, one of which 
matches the true task labels for each run), not the dataset as a 
whole (eighteen rows). This ensures that each run has three 
examples of each type in all permutations. The permutation 
test can be thought of as selecting strips at random from a 
“bag”, where each strip lists one of the possible ways to 
order the task labels within a single run (Fig. 3). 

A. Dataset-Wise Permutation Schemes 

We first describe the “dataset-wise” scheme, permuting 
both the training and testing set labels, as shown in Fig. 4. 
Each iteration of this permutation test starts by selecting 
three relabelings (as listed in Fig. 3), with replacement, not 
allowing any run to be given its true labeling. 

The cross-validation is then performed on each relabeled 
dataset, in the same manner as on the true-labeled dataset 
(Fig. 4). Notice the similarity between Figs. 2 and 4: the 
classifier always sees the same set of labels for a particular 
run, regardless of whether that run is in the training or testing 
set on the current CV fold. The dataset-wise scheme can also 
be used when only the training set is relabeled (instead of the 
entire dataset, as in Fig. 4.): we keep the true task labeling 
for each test set, changing only the training set labels, as 
shown in Fig. 5. Each run now has two labelings within each 
iteration of the permutation test: one when it is in a training 
set, and another, the true task labels, when it is in a test set. 

B. Fold-Wise Permutation Schemes 

The fold-wise permutation scheme also draws new task 
labels at random from the twenty listed in Fig. 3, but the 
labels are drawn independently on each cross-validation fold. 
Fig. 6 shows a single iteration of the fold-wise scheme, when 



 

Figure 5. Single iteration of a dataset-wise permutation scheme, when only the training sets are relabeled. The same relabeling is assigned to each run 

whenever it appears in a training set (as in Fig. 4), but the true labeling is used when it is in the testing set. 

 only the training set labels are permuted (paralleling dataset-
wise Fig. 5). While not shown, a diagram illustrating the 
fold-wise scheme for permuting both the training and testing 
sets would be the same as Fig. 6, except that new labels 
would be assigned to the testing sets (independently on each 
fold), instead of the true labels shown in Fig. 6. 

 While Fig. 6 is similar in structure to Fig. 5, under the 
fold-wise scheme there is no consistency (statistical 
dependency) in the labeling a single run is given; different 
labelings can be used on each of the CV folds making up 
each iteration of the permutation test. Concretely, under the 
dataset-wise scheme a particular case (say the third row of 
the Fig. 1 dataset) will always have the same label (1, in Fig. 
5) in a single permutation, while under the fold-wise scheme 
each case can be assigned multiple labels within a single 
iteration of the permutation test (the third row is assigned 1 
on the first fold and 2 on the second in the iteration shown in 
Fig. 6). 

IV. EXTENSION TO ARBITRARY DESIGNS 

The running example is purposely simple, containing the 
minimum structure necessary to distinguish the dataset-wise 
and fold-wise permutation schemes. We now briefly describe 
extending the schemes to arbitrary single-subject designs. 

Under the dataset-wise scheme we attempt to keep the 
treatment of the dataset created for each iteration of the 
permutation test as similar as possible to the true-labeled 
dataset: the examples are relabeled first, then the 
classification is performed exactly as on the true data. This 
naturally extends to more complex designs, but sometimes 
the number of permutation strata that must be considered is 
non-trivial. For example, suppose that rather than using the 

runs for the CV folds in the running example we leave out 
one example of each class on each fold (i.e. two rows of Fig. 
1 make up each test set, the remaining sixteen comprise the 
training set), for nine-fold CV. There are many ways the two 
examples making up each test set can be chosen; the test set 
examples for each fold should therefore be recorded so that 
the same partitioning can be used for all permutation 
iterations. Thus, the accuracy obtained on the true-labeled 
dataset using a particular CV (i.e. which examples are in the 
training set each CV fold) is compared to the distribution of 
accuracies obtained by changing the task labels, but in which 
the CV structure is held constant. Similarly, other dataset 
changes (e.g. omitting examples to ensure balance in the 
training data) should be mirrored in the permutation test (e.g. 
by omitting the same examples).  

Under the fold-wise scheme we maximize the 
randomness of the labels seen by each classifier; each CV 
fold is relabeled independently. Consider again the case of 
leave-one-example-out CV. It is still advisable to match 
which examples are left out each fold in the permutation 
distribution to those left out in the true-labeled dataset, but 
the similarity of the nine training sets making up a single 
iteration is lost. This discards some of the structure of the 
true data, structure kept with the dataset-wise scheme. 

V. DISCUSSION 

Both the dataset-wise and fold-wise permutation schemes 
are currently in use; pyMVPA [6] implements the fold-wise 
scheme by default, while other authors prefer the dataset-
wise scheme. Many manuscripts do not describe the 
mechanics of the permutation test in sufficient detail for 



 

Figure 6. Single iteration of a fold-wise permutation scheme, when only the training sets are relabeled. While similar in structure to Fig. 5 (dataset-wise 

relabeling the training sets only), under the fold-wise scheme a unique relabeling is chosen for each training set run on each CV fold: there is no 
relationship between the labeling on different folds. The same diagram applies if both the testing and training sets are permuted fold-wise, except that new 

labels are selected for the testing sets as well (i.e. the true-labeled data would not be used). 

 confident scheme identification. But does it need to be 
described in more detail? Does the scheme matter?  

We have conducted simulations and comparisons 
exploring the influence of permutation scheme on null 
distributions (and so p-values). The fold-wise scheme often 
results in a lower-variance null distribution (and so more 
significant p-value for any given accuracy), particularly 
when the number of CV folds is large. For example, in one 
simulation dataset-wise permutation resulted in a p-value of 
0.061 while fold-wise gave a p-value of 0.032, a potentially 
crucial difference in practice (a detailed description and code 
to reproduce the simulations is available in 
https://dl.dropboxusercontent.com/u/13098670/MVPA_perm
_schemes.zip). 

Theoretical treatment is needed to properly address the 
question of which permutation scheme provides the best 
balance of power and leniency, treatment beyond the scope 
of the current work. Intuitively, the dataset-wise scheme 
seems more consistent with the principle underlying 
permutation testing: the relabeled datasets are treated in the 
same manner as the true data. But this intuition is not 
universal, and making methodological decisions on the basis 
of intuition is often unwise. 
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