

Figure 1. The dataset for the running example is excerpted at left, arranged

in the typical manner for MVPA. The boxes at right introduce the dataset

representation used in later figures. In these boxes the task labels sent to the
classifier are shown in circles. Since this is the true-labeled data, the circled

task labels match those shown in the data table.

MVPA Permutation Schemes
Permutation Testing in the Land of Cross-Validation

Joset A. Etzel and Todd S. Braver

Cognitive Control & Psychopathology Lab, Psychology Department

Washington University in St. Louis

St. Louis, MO, USA

jetzel@artsci.wustl.edu, tbraver@artsci.wustl.edu

Abstract—Permutation tests are widely used for significance

testing in classification-based fMRI analyses, but the precise

manner of relabeling varies, and is generally non-trivial for

MVPA because of the complex data structure. Here, we

describe two common means of carrying out permutation tests.

In the first, which we call the “dataset-wise” scheme, the

examples are relabeled prior to conducting the cross-

validation, while in the second, the “fold-wise” scheme, each

fold of the cross-validation is relabeled independently. While

the dataset-wise scheme maintains more of the true dataset’s

structure, additional work is needed to determine which

method should be preferred in practice, since the two methods

often result in different null distributions (and so p-values).

Keywords- fMRI; classification; significance; permutation;

MVPA; cross-validation;

I. INTRODUCTION

Permutation tests are often preferred for significance
testing in fMRI multivariate pattern analysis (MVPA, also
called multi-voxel pattern analysis or multivariate pattern
classification) application studies, since MVPA generally
involves dataset characteristics that violate the assumptions
needed for parametric tests, or hypotheses unsuitable for
traditional methods [1, 2].

Despite this widespread use, the optimum procedures
have not been determined. There is considerable ambiguity
and numerous experimenter degrees in freedom in how
permutation procedures are implemented. For example, how
should the relabelings be done, given the complex cross-
validation (CV) and dependency structures (e.g. similarity
between volumes collected within the same scanner run)
present in fMRI data?

In practice, the statistical testing is usually only briefly
described, stating that permutation testing was used, perhaps
also giving the number of relabelings. These vague
methodological descriptions, combined with complex
analyses and multiple reasonable implementations, have led
to a proliferation of permutation schemes. Here we describe
two common permutation strategies, which we refer to as the
“dataset-wise” and “fold-wise” schemes. Given the lack of a
fixed terminology for describing MVPA permutation testing,
we use a concrete example and numerous illustrations to
demonstrate the two schemes in the hope that the figures will
bridge terminological shortcomings.

II. RUNNING EXAMPLE

We will describe the dataset-wise and fold-wise
permutation schemes using a running example of a minimal,
yet representative, task-based classification analysis for a
single subject. This person completed three runs of fMRI
scanning, each of which contained three blocks each of two
different tasks. These task blocks were presented with
sufficient rest intervals to allow the task-related BOLD
signal to return to baseline, making it reasonable to assume
that the task labels can be permuted [2, 3]. We further
assume that the image preprocessing (motion correction,
etc.) was adequate to remove most linear trends and
uninteresting signals. Temporal compression [4] was
performed, so that each task block is represented in the final
dataset as a single labeled vector of voxel values (Fig. 1).
There are n entries in each vector, corresponding to the
voxels falling within an anatomically-defined region of
interest (ROI). We assume that n is small enough (e.g. 100)
that further feature selection is not necessary.

Figure 2. Schematic for determining accuracy. Each rectangle represents

the true-labeled data for a run (Fig. 1). Thin lines indicate which runs make

up the training set for each fold (i.e. partitioning on the runs), while thick
arrows indicate the test set. The final accuracy (“mean acc.”) is calculated

by averaging the accuracies from each of the three cross-validation folds.

Figure 4. Single iteration of a dataset-wise permutation scheme, when

both the training and testing sets are relabeled. The classifier sees the

permuted task labels (colored strips), rather than the true task labels.

Figure 3. The twenty possible ways to order the task labels for a single

run. These colors are used for the rearrangments in subsequent figures.

We wish to use a classification algorithm (e.g. linear
support vector machines) to distinguish the two tasks, using
all n voxels listed in the dataset. For simplicity, we will
partition the data on the runs (three-fold CV): leave out one
run, train on the two remaining runs, and repeat, leaving out
each run in turn. The three test set accuracies are then
averaged to obtain the overall classification accuracy (Fig.
2), which, if greater than chance, we interpret as indicating
that the voxels’ BOLD varied with task.

III. PERMUTATION TESTING

All permutation tests involve assigning new labels to the
observations. For the current running example, as in most
task-based MVPA, this entails randomly shuffling the task
labels, then retraining the classifier, in order to compare the
mean accuracy obtained with the true data labels with the
accuracies obtained using the permuted labels [5]. But how
exactly should the task labels be shuffled?

It is generally agreed that stratified relabeling should be
used: the label permutations need to reflect the variance
structure of the data. For the running example, we should
thus permute the labels within each individual run (six rows,
two task types, 6C3 = 20 possible labelings, one of which
matches the true task labels for each run), not the dataset as a
whole (eighteen rows). This ensures that each run has three
examples of each type in all permutations. The permutation
test can be thought of as selecting strips at random from a
“bag”, where each strip lists one of the possible ways to
order the task labels within a single run (Fig. 3).

A. Dataset-Wise Permutation Schemes

We first describe the “dataset-wise” scheme, permuting
both the training and testing set labels, as shown in Fig. 4.
Each iteration of this permutation test starts by selecting
three relabelings (as listed in Fig. 3), with replacement, not
allowing any run to be given its true labeling.

The cross-validation is then performed on each relabeled
dataset, in the same manner as on the true-labeled dataset
(Fig. 4). Notice the similarity between Figs. 2 and 4: the
classifier always sees the same set of labels for a particular
run, regardless of whether that run is in the training or testing
set on the current CV fold. The dataset-wise scheme can also
be used when only the training set is relabeled (instead of the
entire dataset, as in Fig. 4.): we keep the true task labeling
for each test set, changing only the training set labels, as
shown in Fig. 5. Each run now has two labelings within each
iteration of the permutation test: one when it is in a training
set, and another, the true task labels, when it is in a test set.

B. Fold-Wise Permutation Schemes

The fold-wise permutation scheme also draws new task
labels at random from the twenty listed in Fig. 3, but the
labels are drawn independently on each cross-validation fold.
Fig. 6 shows a single iteration of the fold-wise scheme, when

Figure 5. Single iteration of a dataset-wise permutation scheme, when only the training sets are relabeled. The same relabeling is assigned to each run

whenever it appears in a training set (as in Fig. 4), but the true labeling is used when it is in the testing set.

 only the training set labels are permuted (paralleling dataset-
wise Fig. 5). While not shown, a diagram illustrating the
fold-wise scheme for permuting both the training and testing
sets would be the same as Fig. 6, except that new labels
would be assigned to the testing sets (independently on each
fold), instead of the true labels shown in Fig. 6.

 While Fig. 6 is similar in structure to Fig. 5, under the
fold-wise scheme there is no consistency (statistical
dependency) in the labeling a single run is given; different
labelings can be used on each of the CV folds making up
each iteration of the permutation test. Concretely, under the
dataset-wise scheme a particular case (say the third row of
the Fig. 1 dataset) will always have the same label (1, in Fig.
5) in a single permutation, while under the fold-wise scheme
each case can be assigned multiple labels within a single
iteration of the permutation test (the third row is assigned 1
on the first fold and 2 on the second in the iteration shown in
Fig. 6).

IV. EXTENSION TO ARBITRARY DESIGNS

The running example is purposely simple, containing the
minimum structure necessary to distinguish the dataset-wise
and fold-wise permutation schemes. We now briefly describe
extending the schemes to arbitrary single-subject designs.

Under the dataset-wise scheme we attempt to keep the
treatment of the dataset created for each iteration of the
permutation test as similar as possible to the true-labeled
dataset: the examples are relabeled first, then the
classification is performed exactly as on the true data. This
naturally extends to more complex designs, but sometimes
the number of permutation strata that must be considered is
non-trivial. For example, suppose that rather than using the

runs for the CV folds in the running example we leave out
one example of each class on each fold (i.e. two rows of Fig.
1 make up each test set, the remaining sixteen comprise the
training set), for nine-fold CV. There are many ways the two
examples making up each test set can be chosen; the test set
examples for each fold should therefore be recorded so that
the same partitioning can be used for all permutation
iterations. Thus, the accuracy obtained on the true-labeled
dataset using a particular CV (i.e. which examples are in the
training set each CV fold) is compared to the distribution of
accuracies obtained by changing the task labels, but in which
the CV structure is held constant. Similarly, other dataset
changes (e.g. omitting examples to ensure balance in the
training data) should be mirrored in the permutation test (e.g.
by omitting the same examples).

Under the fold-wise scheme we maximize the
randomness of the labels seen by each classifier; each CV
fold is relabeled independently. Consider again the case of
leave-one-example-out CV. It is still advisable to match
which examples are left out each fold in the permutation
distribution to those left out in the true-labeled dataset, but
the similarity of the nine training sets making up a single
iteration is lost. This discards some of the structure of the
true data, structure kept with the dataset-wise scheme.

V. DISCUSSION

Both the dataset-wise and fold-wise permutation schemes
are currently in use; pyMVPA [6] implements the fold-wise
scheme by default, while other authors prefer the dataset-
wise scheme. Many manuscripts do not describe the
mechanics of the permutation test in sufficient detail for

Figure 6. Single iteration of a fold-wise permutation scheme, when only the training sets are relabeled. While similar in structure to Fig. 5 (dataset-wise

relabeling the training sets only), under the fold-wise scheme a unique relabeling is chosen for each training set run on each CV fold: there is no
relationship between the labeling on different folds. The same diagram applies if both the testing and training sets are permuted fold-wise, except that new

labels are selected for the testing sets as well (i.e. the true-labeled data would not be used).

 confident scheme identification. But does it need to be
described in more detail? Does the scheme matter?

We have conducted simulations and comparisons
exploring the influence of permutation scheme on null
distributions (and so p-values). The fold-wise scheme often
results in a lower-variance null distribution (and so more
significant p-value for any given accuracy), particularly
when the number of CV folds is large. For example, in one
simulation dataset-wise permutation resulted in a p-value of
0.061 while fold-wise gave a p-value of 0.032, a potentially
crucial difference in practice (a detailed description and code
to reproduce the simulations is available in
https://dl.dropboxusercontent.com/u/13098670/MVPA_perm
_schemes.zip).

Theoretical treatment is needed to properly address the
question of which permutation scheme provides the best
balance of power and leniency, treatment beyond the scope
of the current work. Intuitively, the dataset-wise scheme
seems more consistent with the principle underlying
permutation testing: the relabeled datasets are treated in the
same manner as the true data. But this intuition is not
universal, and making methodological decisions on the basis
of intuition is often unwise.

ACKNOWLEDGMENT

This research was supported by NIH 3RO1MH66078-
06A1W1 to Todd S. Braver and 1R01AG031150 to Jeffrey
M. Zacks. The authors thank Mohammed S. Al-Rawi, Malin

Björnsdotter, and Jeffrey M. Zacks for helpful feedback on
earlier versions of this manuscript.

REFERENCES

[1] P. Golland, F. Liang, S. Mukherjee, and D. Panchenko, "Permutation

Tests for Classification," in Lecture Notes in Computer Science.

vol. 3559: Springer Berlin Heidelberg, 2005, pp. 501-515.

[2] T. E. Nichols and A. P. Holmes, "Nonparametric permutation tests for

functional neuroimaging: A primer with examples," Human

Brain Mapping, vol. 15, pp. 1-25, 2001.

[3] F. Pereira and M. Botvinick, "Information mapping with pattern

classifiers: A comparative study," NeuroImage, vol. 56, pp.

476-496, 2011.

[4] J. Mourao-Miranda, E. Reynaud, F. McGlone, G. Calvert, and M.

Brammer, "The impact of temporal compression and space

selection on SVM analysis of single-subject and multi-subject

fMRI data," NeuroImage, vol. 33, pp. 1055-1065, 2006/12

2006.

[5] S. Mukherjee, P. Golland, and D. Panchenko, "Permutation Tests for

Classification," in AI Memo 2003-019: Massachusetts Institute

of Technology Computer Science and Artificial Intelligence

Laboratory, 2003.

[6] M. Hanke, Y. Halchenko, P. Sederberg, S. Hanson, J. Haxby, and S.

Pollmann, "PyMVPA: a Python Toolbox for Multivariate

Pattern Analysis of fMRI Data," Neuroinformatics, vol. 7, pp.

37-53, 2009.

	I. Introduction
	II. Running Example
	III. Permutation Testing
	A. Dataset-Wise Permutation Schemes
	B. Fold-Wise Permutation Schemes

	IV. Extension to Arbitrary Designs
	V. discussion
	Acknowledgment
	References

