
Inference on computational models from 

predictions of representational geometries 

Nikolaus Kriegeskorte 

MRC Cognition and Brain Sciences Unit 

Cambridge, UK 



 

MVPA can reveal what information is present in a 
region (in a linearly decodable format). 

 

Ultimately, we want to learn about the 
computational mechanisms of brain information 
processing. 

 

We can test computational models by comparing 
their internal representations to brain 
representations. 

Inference on computational models from 

predictions of representational geometries 



Representational geometry 
The geometry of the points in a high-dimensional  

response pattern space, which are thought to represent particular stimuli. 
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Can we explain this representational geometry 

with a computational model? 
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Deep convolutional neural network 

Krizhevsky et al. 2012 

convolutional fully 
connected 

• state of the art in computer vision 

• trained with stochastic gradient descent  

• supervised with 1.2 million category-labeled images 

• 60 million parameters and 650,000 neurons 

Is this network 

functionally similar 

to the brain? 
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Deep supervised convolutional network 

noise ceiling 



The group-mean RDM 
minimises the sum of squared 
Euclidean distances to single-
subject RDMs. 

 

For rank RDMs, the group-
mean RDM therefore 
minimises the sum of 
correlation distances (thus 
maximising the average 
correlation). 

 

The average correlation to the 
group-mean of rank RDMs, 
thus provides a precise and 
hard upper bound on the 
average Spearman 
correlation any model can 
achieve. 

 
distance 1 

d
is

ta
n
c
e
 2

 

subject 1 

subject 2 

subject 3 

group mean 

true model 

upper bound 
For Kendall’s tau a, an iterative procedure 

is needed to find the hard upper bound. 

Estimating the noise ceiling 

Nili et al. 2014 
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Deep supervised convolutional network 

noise ceiling 



The deep net almost reached the noise ceiling! 

 

 

 

 Can weighted combinations of its units 

fully explain the IT representation? 

Khaligh-Razavi & Kriegeskorte 2014 



Representational feature weighting with 

non-negative least-squares 

f1  

w2 f2 

f2  fk  

w1 f1 wk fk 

.           .            .  

.           .            .  

model RDM 
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Representational feature weighting with 

non-negative least-squares 

wk weight given to model feature k 

fk(i) model feature k for stimulus i 

di,j distance between stimuli i,j  

w is the weight vector [w1 w2 ... wk] minimising the squared errors 
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The squared distance RDM  

of weighted model features  

equals a weighted sum  

of single-feature RDMs. 

model feature k weight k 

stimuli i, j 

predicted 

distance 

Khaligh-Razavi 

& Kriegeskorte (2014) 

predicted distance measured distance 
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convolutional fully 
connected 

SVM 
discriminants 

weighted 
combination 
of fully connected layers 
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Deep supervised 

convolutional network 



Conclusions 

We can go beyond decoding stimulus information and test 

explicit computational models of brain information processing. 

Representations in brains and models can be characterised by 

representational dissimilarity matrices (RDMs). 

Multiple models can be statistically compared by 

nonparametric statistical inference. 

The noise ceiling tells us whether a model fully explains our 

data, guiding us to seek either a better model or more data. 

Combinations of representational features correspond to 

additive squared distance components, which can be fitted 

with nonnegative least squares.  
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