Elliptic Curves

Devin Akman

Washington University

February 2024

What is an Elliptic Curve?

- An elliptic curve is an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

What is an Elliptic Curve?

- An elliptic curve is an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

- The right-hand side should have three distinct roots.

What is an Elliptic Curve?

- An elliptic curve is an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

- The right-hand side should have three distinct roots.
- This is equivalent to requiring

$$
\Delta:=-4 a^{3}-27 b^{2} \neq 0
$$

What is an Elliptic Curve?

- An elliptic curve is an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

- The right-hand side should have three distinct roots.
- This is equivalent to requiring

$$
\Delta:=-4 a^{3}-27 b^{2} \neq 0
$$

- Why do we care about such equations?

What is an Elliptic Curve?

- An elliptic curve is an equation of the form

$$
y^{2}=x^{3}+a x+b
$$

- The right-hand side should have three distinct roots.
- This is equivalent to requiring

$$
\Delta:=-4 a^{3}-27 b^{2} \neq 0
$$

- Why do we care about such equations?
- Their solution sets have a special property.

How Can We Solve the Equation?

- How to solve it over \mathbb{C} ?

Washington
University inSt.Louis

How Can We Solve the Equation?

- How to solve it over \mathbb{C} ?
- Easy. We can always take square roots, so there are one or two values of y for every value of x :

$$
y= \pm \sqrt{x^{3}+a x+b}
$$

How Can We Solve the Equation?

- How to solve it over \mathbb{C} ?
- Easy. We can always take square roots, so there are one or two values of y for every value of x :

$$
y= \pm \sqrt{x^{3}+a x+b}
$$

- How to solve it over \mathbb{R} ?

How Can We Solve the Equation?

- How to solve it over \mathbb{C} ?
- Easy. We can always take square roots, so there are one or two values of y for every value of x :

$$
y= \pm \sqrt{x^{3}+a x+b}
$$

- How to solve it over \mathbb{R} ?
- The square roots are real numbers iff

$$
x^{3}+a x+b \geq 0
$$

How Can We Solve the Equation?

- If $\Delta>0$, then the cubic has three distinct real roots:

Washington
University inSt.Louis

How Can We Solve the Equation?

- The solution looks like this:

How Can We Solve the Equation?

- If $\Delta<0$, then the cubic has one real root:

How Can We Solve the Equation?

- The solution looks like this:

Washington
University inSt.Louis

How Can We Solve the Equation?

- The circles are a slice of the solutions over \mathbb{C}.

Washington
University inSt.Louis

How Can We Solve the Equation?

- How to solve it over \mathbb{Q} ?

Washington
University inSt.Louis

How Can We Solve the Equation?

- How to solve it over \mathbb{Q} ?
- Much more difficult! Still an active research area.

How Can We Solve the Equation?

- How to solve it over \mathbb{Q} ?
- Much more difficult! Still an active research area.
- Can you find solutions to

$$
y^{2}=x^{3}-x+1
$$

that are integers or rational numbers?

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).
- $P+Q=-R$.

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).
- $P+Q=-R$.
- The solutions form an abelian group.

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).
- $P+Q=-R$.
- The solutions form an abelian group.
- Things to ponder:

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).
- $P+Q=-R$.
- The solutions form an abelian group.
- Things to ponder:
- What if $Q=P$?

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).
- $P+Q=-R$.
- The solutions form an abelian group.
- Things to ponder:
- What if $Q=P$?
- What if $Q=-P$?

Special Property of Solutions

- Two solutions (over any field!) can be added to get a third one.
- Let P and Q be two points on an elliptic curve E.
- The secant line $\overline{P Q}$ intersects E at a third point R.
- Let $-R$ be the reflection of R across the x-axis (also a point on E !).
- $P+Q=-R$.
- The solutions form an abelian group.
- Things to ponder:
- What if $Q=P$?
- What if $Q=-P$?
- What is the identity element?

Special Property of Solutions

- Example:

Special Property of Solutions

- Use this addition law to generate more solutions from the ones you've already found.

Special Property of Solutions

- Use this addition law to generate more solutions from the ones you've already found.
- Strategy:

Special Property of Solutions

- Use this addition law to generate more solutions from the ones you've already found.
- Strategy:
- Find an equation for the line between two points.

Special Property of Solutions

- Use this addition law to generate more solutions from the ones you've already found.
- Strategy:
- Find an equation for the line between two points.
- Substitute $y=m x+b$ into the equation for the curve.

Special Property of Solutions

- Use this addition law to generate more solutions from the ones you've already found.
- Strategy:
- Find an equation for the line between two points.
- Substitute $y=m x+b$ into the equation for the curve.
- Use the fact that you already know two out of three solutions of the resulting cubic.

Special Property of Solutions

- Use this addition law to generate more solutions from the ones you've already found.
- Strategy:
- Find an equation for the line between two points.
- Substitute $y=m x+b$ into the equation for the curve.
- Use the fact that you already know two out of three solutions of the resulting cubic.
- Polynomial long division or Vieta's formulas may help.

A General Formula for Adding Points

- We'll derive a general addition formula.

A General Formula for Adding Points

- We'll derive a general addition formula.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$.

A General Formula for Adding Points

- We'll derive a general addition formula.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$.
- The slope of the line between them is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

A General Formula for Adding Points

- We'll derive a general addition formula.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$.
- The slope of the line between them is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- If $x_{2}=x_{1}$ and $y_{2}=-y_{1}$, then $P+Q=\infty$.

A General Formula for Adding Points

- We'll derive a general addition formula.
- Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$.
- The slope of the line between them is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- If $x_{2}=x_{1}$ and $y_{2}=-y_{1}$, then $P+Q=\infty$.
- We'll handle the case $P=Q$ later.

A General Formula for Adding Points

- The equation of the line $\overline{P Q}$ is

$$
y=m\left(x-x_{1}\right)+y_{1} .
$$

A General Formula for Adding Points

- The equation of the line $\overline{P Q}$ is

$$
y=m\left(x-x_{1}\right)+y_{1} .
$$

- Substitute:

$$
x^{3}-x+1-\left[m\left(x-x_{1}\right)+y_{1}\right]^{2}=0
$$

A General Formula for Adding Points

- The equation of the line $\overline{P Q}$ is

$$
y=m\left(x-x_{1}\right)+y_{1} .
$$

- Substitute:

$$
x^{3}-x+1-\left[m\left(x-x_{1}\right)+y_{1}\right]^{2}=0
$$

- The coefficient of x^{2} is

$$
-m^{2}=-\left(x_{1}+x_{2}+x_{3}\right) \Longrightarrow x_{3}=m^{2}-\left(x_{1}+x_{2}\right)
$$

A General Formula for Adding Points

- Plug x_{3} back into the equation of the line:

$$
-y_{3}=m\left(x_{3}-x_{1}\right)+y_{1} \Longrightarrow y_{3}=m\left(x_{1}-x_{3}\right)-y_{1} .
$$

A General Formula for Adding Points

- Plug x_{3} back into the equation of the line:

$$
-y_{3}=m\left(x_{3}-x_{1}\right)+y_{1} \Longrightarrow y_{3}=m\left(x_{1}-x_{3}\right)-y_{1} .
$$

- The final formula is $P+Q=\left(x_{3}, y_{3}\right)$, where

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
x_{3} & =m^{2}-\left(x_{1}+x_{2}\right) \\
y_{3} & =m\left(x_{1}-x_{3}\right)-y_{1} .
\end{aligned}
$$

A General Formula for Adding Points

- When $P=Q$, the only change we have to make is using the tangent line instead of the secant line.

A General Formula for Adding Points

- When $P=Q$, the only change we have to make is using the tangent line instead of the secant line.
- Implicit differentiation gives us

$$
2 y y^{\prime}=3 x^{2}-1 \Longrightarrow y^{\prime}=\frac{3 x^{2}-1}{2 y} \Longrightarrow m=\frac{3 x_{1}^{2}-1}{2 y_{1}}
$$

A General Formula for Adding Points

- When $P=Q$, the only change we have to make is using the tangent line instead of the secant line.
- Implicit differentiation gives us

$$
2 y y^{\prime}=3 x^{2}-1 \Longrightarrow y^{\prime}=\frac{3 x^{2}-1}{2 y} \Longrightarrow m=\frac{3 x_{1}^{2}-1}{2 y_{1}}
$$

- This formula doesn't work at $y_{1}=0$.

A General Formula for Adding Points

- When $P=Q$, the only change we have to make is using the tangent line instead of the secant line.
- Implicit differentiation gives us

$$
2 y y^{\prime}=3 x^{2}-1 \Longrightarrow y^{\prime}=\frac{3 x^{2}-1}{2 y} \Longrightarrow m=\frac{3 x_{1}^{2}-1}{2 y_{1}}
$$

- This formula doesn't work at $y_{1}=0$.
- Why not? If $P=\left(x_{1}, 0\right)$, then what is $2 P$?

Solutions over \mathbb{Q} and Finite Fields

- For this curve, it turns out that adding the point $(1,1)$ to itself forever generates half of all rational solutions.

Solutions over \mathbb{Q} and Finite Fields

- For this curve, it turns out that adding the point $(1,1)$ to itself forever generates half of all rational solutions.
- The other half is their negatives.

Solutions over \mathbb{Q} and Finite Fields

- For this curve, it turns out that adding the point $(1,1)$ to itself forever generates half of all rational solutions.
- The other half is their negatives.
- The abelian group of rational points is \mathbb{Z} with $(1, \pm 1)$ as generators.

Solutions over \mathbb{Q} and Finite Fields

- For this curve, it turns out that adding the point $(1,1)$ to itself forever generates half of all rational solutions.
- The other half is their negatives.
- The abelian group of rational points is \mathbb{Z} with $(1, \pm 1)$ as generators.
- Other curves may have more complicated groups of rational points (or no rational points at all!).

Solutions over \mathbb{Q} and Finite Fields

- For this curve, it turns out that adding the point $(1,1)$ to itself forever generates half of all rational solutions.
- The other half is their negatives.
- The abelian group of rational points is \mathbb{Z} with $(1, \pm 1)$ as generators.
- Other curves may have more complicated groups of rational points (or no rational points at all!).
- Easier exercise: find all solutions to

$$
y^{2} \equiv x^{3}-x+1 \quad(\bmod 5)
$$

Solutions over \mathbb{Q} and Finite Fields

- Our curve looks like this over \mathbb{F}_{5} :

Washington
University inSt.Louis

Applications

- Computers can find points on elliptic curves over finite fields and add them quickly.

Applications

- Computers can find points on elliptic curves over finite fields and add them quickly.
- This addition appears "random," which cryptographers like.

Applications

- Computers can find points on elliptic curves over finite fields and add them quickly.
- This addition appears "random," which cryptographers like.
- Elliptic curve cryptography (ECC) is a faster replacement for RSA.

Applications

- Computers can find points on elliptic curves over finite fields and add them quickly.
- This addition appears "random," which cryptographers like.
- Elliptic curve cryptography (ECC) is a faster replacement for RSA.
- It kicks in each time you go online or make a credit card purchase.

Applications

- Computers can find points on elliptic curves over finite fields and add them quickly.
- This addition appears "random," which cryptographers like.
- Elliptic curve cryptography (ECC) is a faster replacement for RSA.
- It kicks in each time you go online or make a credit card purchase.
- Elliptic curves were a crucial ingredient in Andrew Wiles' proof of Fermat's Last Theorem (FLT).

Applications

- Computers can find points on elliptic curves over finite fields and add them quickly.
- This addition appears "random," which cryptographers like.
- Elliptic curve cryptography (ECC) is a faster replacement for RSA.
- It kicks in each time you go online or make a credit card purchase.
- Elliptic curves were a crucial ingredient in Andrew Wiles' proof of Fermat's Last Theorem (FLT).
- FLT says there are no integer solutions to the equation

$$
a^{n}+b^{n}=c^{n}
$$

where $n>2$ and a, b, c are all nonzero.

