

Resting State Analysis II

Greg Burgess Staff Scientist Washington University Human Connectome Project

Overview: Head motion

- Metrics of motion artifact (Power et al., 2014)
 - Timeseries plots
 - Distance-dependent artifact
 - Motion-group differences
- Denoising strategies: Pros and Cons
 - Censoring (aka scrubbing)
 - Global Signal Regression
 - Low-pass temporal filter

Overview: Physiological

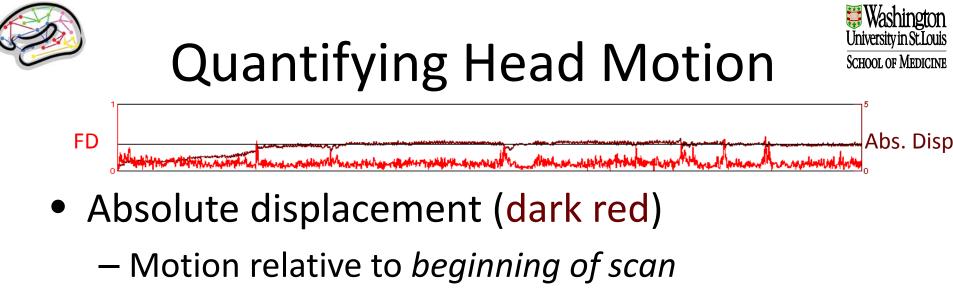
noise regression

- Physiological Denoising
 - RETROICOR
 - RVHRCOR
 - PNM
- Addressing physiological noise with FIX

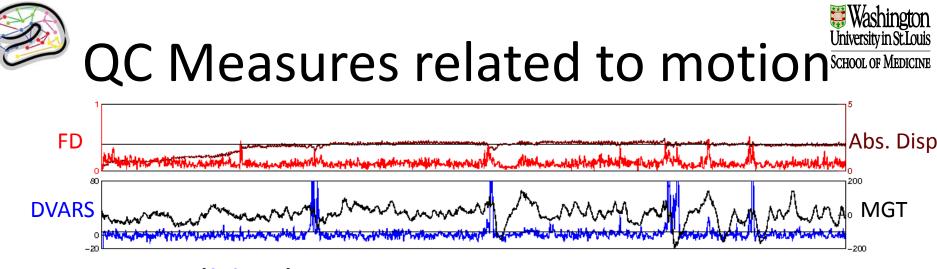
Overview: Individual RSNs

 Identifying individual subject RSNs using supervised classifier

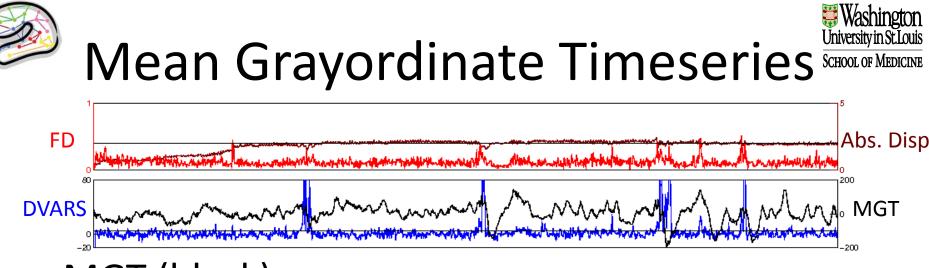
Let's get moving!



- Frame Displacement (FD; bright red)
 - Motion relative to previous time point



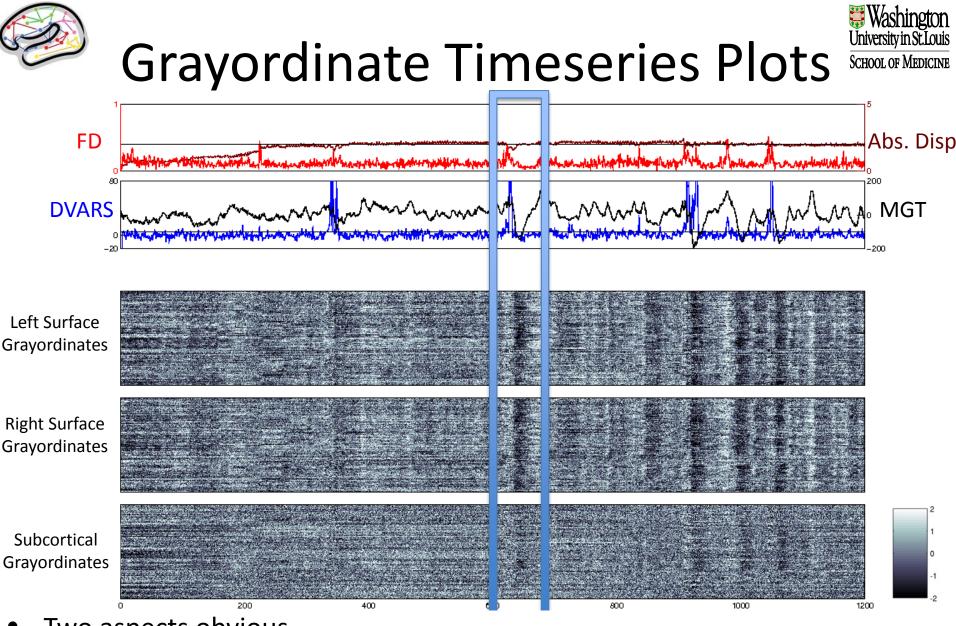
- DVARS (blue)
 - Variance of Backward Derivative
 - Change in image relative to *previous time point*
 - DVARS correlated with FD
 - Power et al. 2014: r = 0.69
 - HCP MPP timeseries: r = 0.34



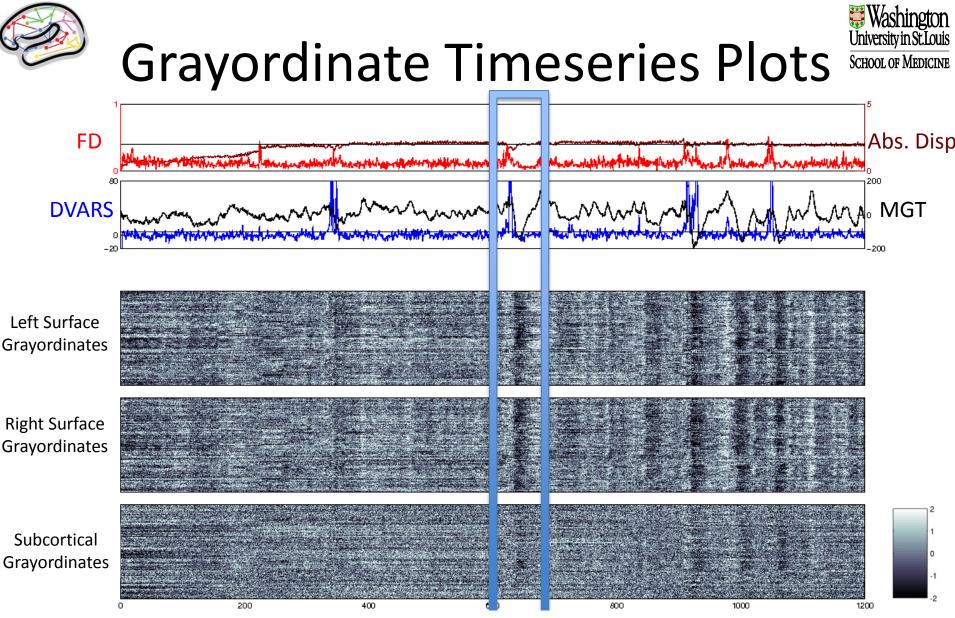
- MGT (black)
 - Mean Grayordinate Timeseries
 - Mean across grayordinates at each time point
- In CIFTI grayordinate data, MGT can be proxy for global signal
 - Power et al., 2014: correlation between wholebrain signal and gray matter mask is r=.99
 - In HCP data: correlation between MGT in CIFTI and whole-brain in NIFTI was r=.93



- "Grayplots"
 - Standardize rfMRI timeseries at each grayordinate
 - Grayscale range from -2 to +2



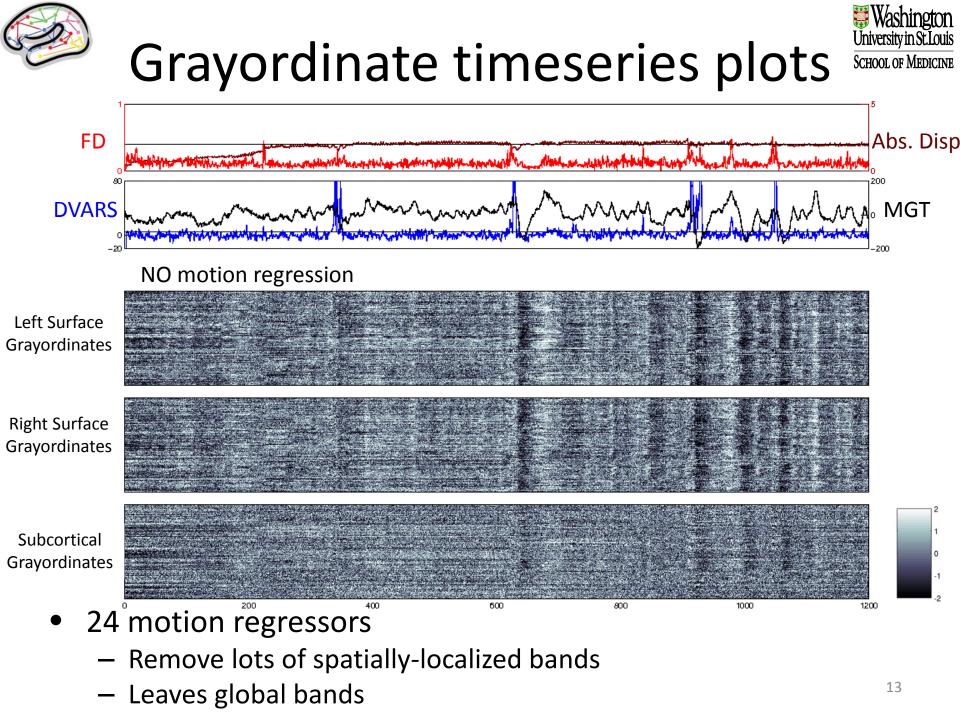
- Two aspects obvious
 - Spatially-localized bands
 - Globally-distributed bands



- Some bands relate to head motion (likely noise)
- Some bands lack clear relationship to head motion (noise or signal)

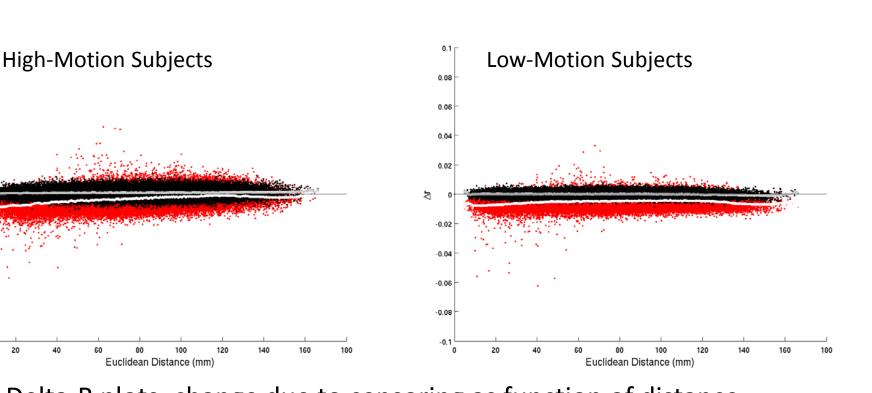
11

- Denoising by regressing motion parameters
 - In HCP rfMRI data, 17.8% of variance explained by regressing 24 motion parameters
 - 6 rigid-body parameters
 - 6 backward derivatives
 - squares of those 12



Censoring

- What if we treat high-motion time points as "outliers"?
 - Simply drop them from analyses!
 - Look at difference between correlations with and without high-motion time points
- Thresholds for censoring in current analysis
 - FD > 0.4mm
 - DVARS > 4.8 (after median-centering)



Distance-dependent artifact

- Delta-R plots: change due to censoring as function of distance between nodes
 - Y-axis shows Delta-R (change in correlation between censored and uncensored data)
 - X-axis is distance between nodes being correlated

0 1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

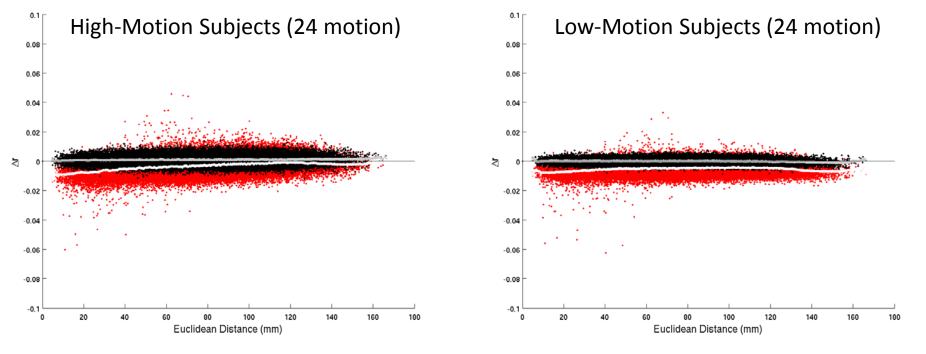
-0.1

0

⊲

- Red cloud after censoring high-motion time points
- Black cloud after censoring same number of random time points

Distance-dependent artifact



- Censoring high-motion time points reveals two types of motion artifact...
 - "Global shift": reduces correlations at all distances
 - Distance-dependent artifact: reduces correlations more for short-distance connections

- "Global shift" and distance-dependent artifact left behind after 24-motion regressors
- Does censoring + 24-motion regressors eliminate motion artifact?
- If so, perhaps we might not expect correlations for low-motion and high-motion subjects to differ
 - N.B. high- and low-motion groups may have real connectivity differences in addition to artifactual differences due to motion (e.g., Zeng et al, 2014)

- Procedure:
 - Divided participants into high-, medium- and lowmotion groups
 - Gender-match (61 participants in each group)
 - Create parcellated connectomes
 - 333 cortical parcels (Gordon et al. 2014)
 - 19 subcortical Freesurfer anatomical parcels
 - Compute motion-group differences (t-tests)
 - Number of significant edges out of 61776 total edges
 - Set alpha to 300xBonferroni (~15 edges)

HIGH PASS	Pre-Censored			Post-Censored		
Condition	Low vs. High	Med vs. High	Low vs. Med	Low vs. High	Med vs. High	Low vs. Med
24-Motion	10525***	88*	14	7578***	49*	16*

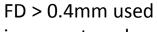
- Very large number of differences between low- and high-motion groups
- Censoring leaves substantial motion-group differences

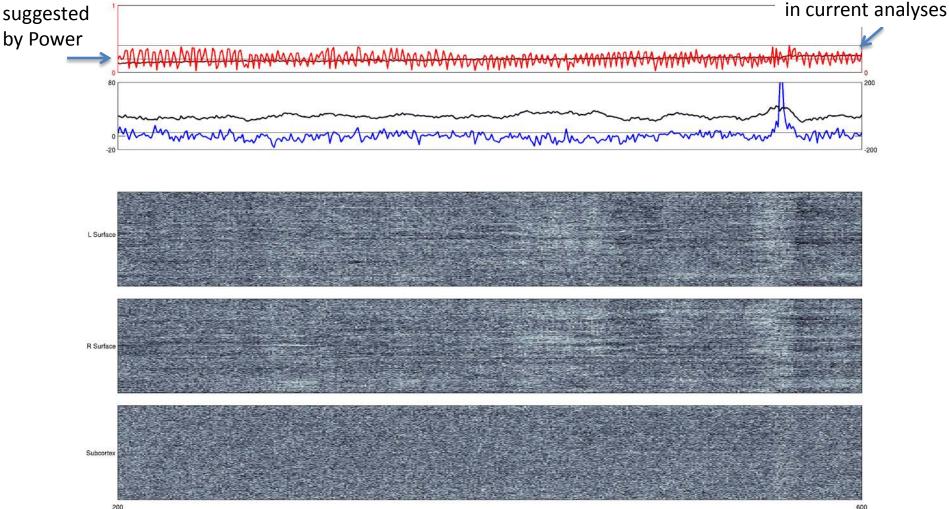
- Power and colleagues (2012, 2014) showed stronger benefits from censoring
 - May remove distance-dependent motion artifact
 - May reduce motion-group differences

Issues with FD estimates

- However... at this point, censoring HCP data doesn't strongly reduce group differences
 - FD estimates have cyclic fluctuations
 - Censoring difficult because magnitude of cyclic fluctuations in FD varies across individuals

Issues with FD estimates



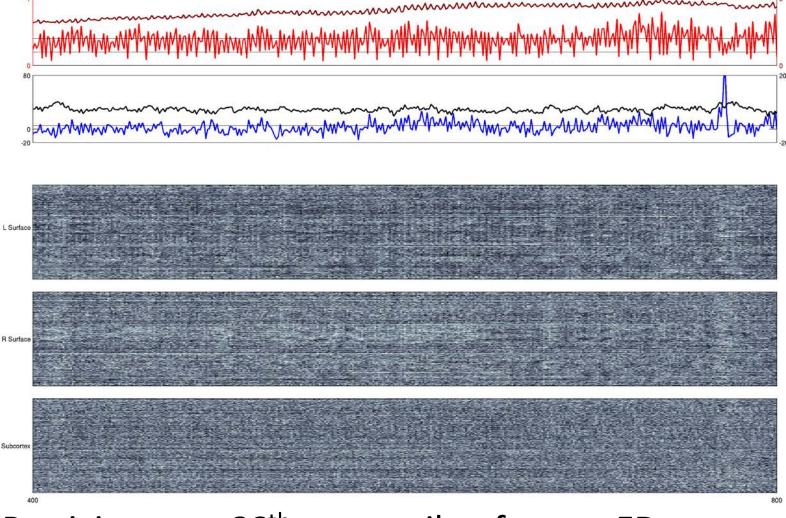


Cyclic fluctuations in head motion / FD estimates

FD > 0.2mm

- FD fluctuations often at same frequency as respiratory measures
- Sometimes FD fluctuations not clearly mirrored in grayordinate BOLD signal 22

Issues with FD estimates



- Participant at 66th percentile of mean FD
- Spikes in DVARS are often easier to identify

Washington

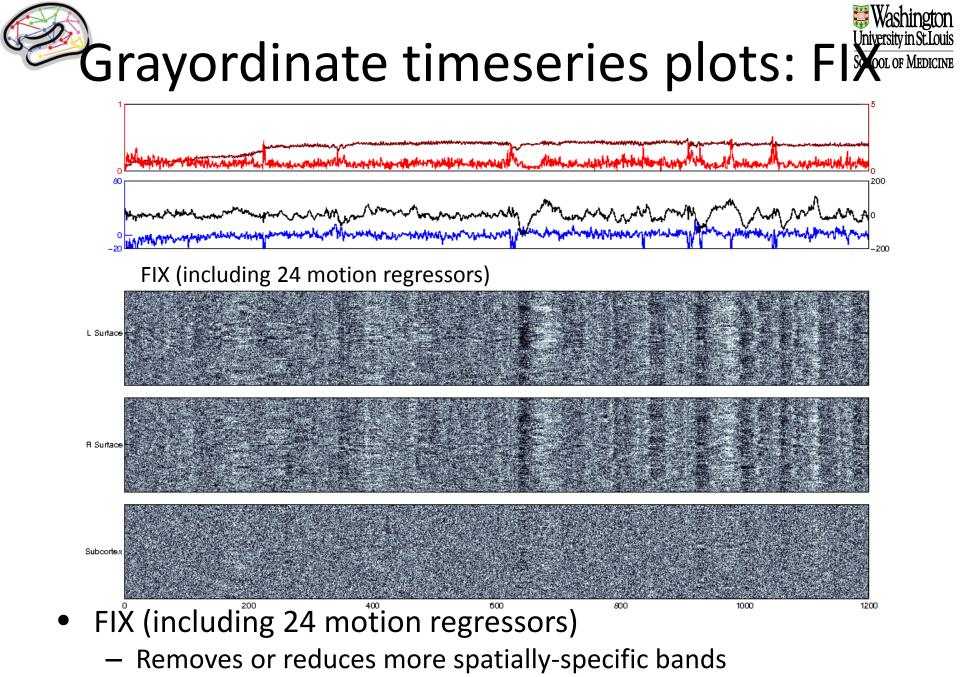
SCHOOL OF MEDICINE

Censoring : CONS

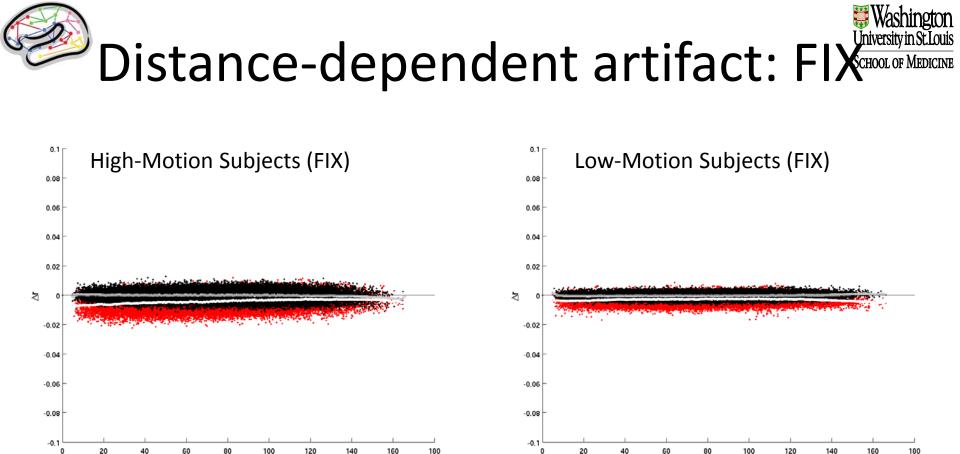
- Censoring increases variance of estimates
 - May only be problematic with less than 5 minutes of data after censoring (Yan et al. 2013)
- Frequency-based measures (e.g., ALFF and fALFF) don't work with censored data

ICA-FIX Denoising

- Motion artifact remains after 24 motion
- Censoring left artifact behind
- Can FIX address the artifact that is left behind?
- FIX pipeline removes
 - 24 motion regressors
 - Unique variance in noise components
 - Variance unrelated to signal components



which reduces intensity of some global bands



- FIX reduces global shift (in low-motion group)
- FIX reduces distance-dependent effect

Euclidean Distance (mm)

Euclidean Distance (mm)

HIGH PASS	Pre-Censored			Post-Censored		
Condition	Low vs. High	Med vs. High	Low vs. Med	Low vs. High	Med vs. High	Low vs. Med
24-Motion	10525***	88*	14	7578***	49*	16*
FIX- Denoised	8790***	120*	23	7459***	74*	50*

 Small reductions in motion-group differences using FIX

ICA-FIX denoising: PROS

- Reduces motion artifact and other noise
- Automated classification of signal vs. noise ICs
- High accuracy of classification in HCP data

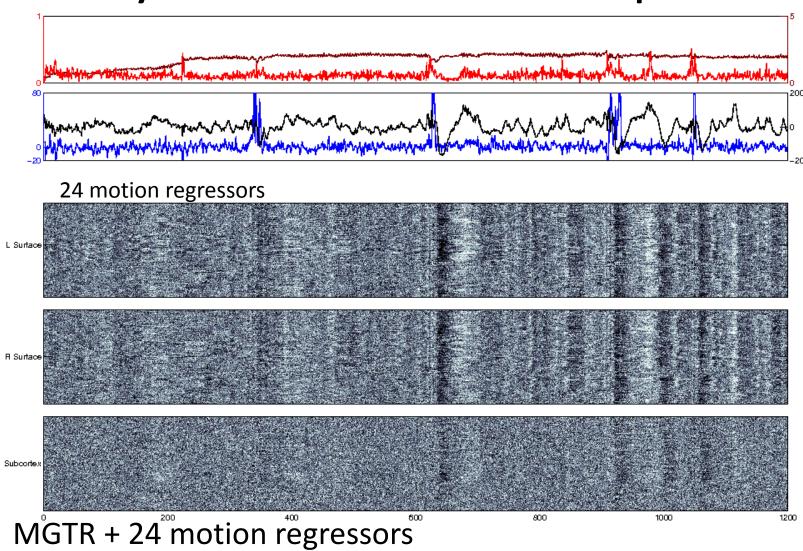
ICA-FIX denoising: CONS

- Signal and noise sources may not be well separated with lower number of time points
 - Not an apparent issue with HCP rfMRI data (1200 time points) but could be an issue with other data
- ICA not well-suited to identifying global signal
 - Assumption of ICA: components are spatially independent
 - Global = not spatially independent

Global signal regression

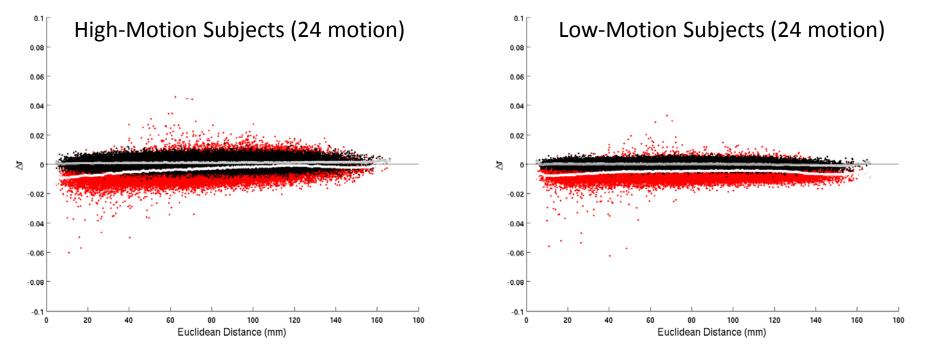
- What about a method that directly addresses global bands?
- Global signal regression may remove widelydistributed sources of noise
 - Respiration and cardiac activity (Birn et al, 2006)
 - Motion-related artifact (Power et al, 2014)

Grayordinate timeseries plots



- Eliminates global bands nearly entirely
- Leaves spatially-specific bands behind

Distance-dependent artifact



- MGTR reduces global shift
- MGTR doesn't reduce distance-dependent

HIGH PASS	Pre-Censored			Post-Censored		
Condition	Low vs. High	Med vs. High	Low vs. Med	Low vs. High	Med vs. High	Low vs. Med
24-Motion	10525***	88*	14	7578***	49*	16*
FIX- Denoised	8790***	120*	23	7459***	74*	50*
24-Motion + MGTR	240***	13	6	109***	8	1

 Substantial decrease in motion-group differences using MGTR!

- Can remove physiological noise
- Reduces several metrics of motion artifact, especially group-differences

Global Signal Regression: CONS

- GS may contain real neural signal
 - Synchronized neural activity across whole brain (dePasquale et al., 2010; Popa et al, 2009; Scholvinck et al., 2010)
- Spatial relationship with global signal is higher in certain brain regions
 - Suggests there may be a real neural signature

Global Signal Regression: CONS

- Rebuttal (Power et al., 2015)
 - Yes, GSR will remove any global neural signal that exists!
 - Motion and physiological noise may be larger proportion of global signal
 - Spatial relationship with global signal stronger in high-motion participants

Global Signal Regression: CONS

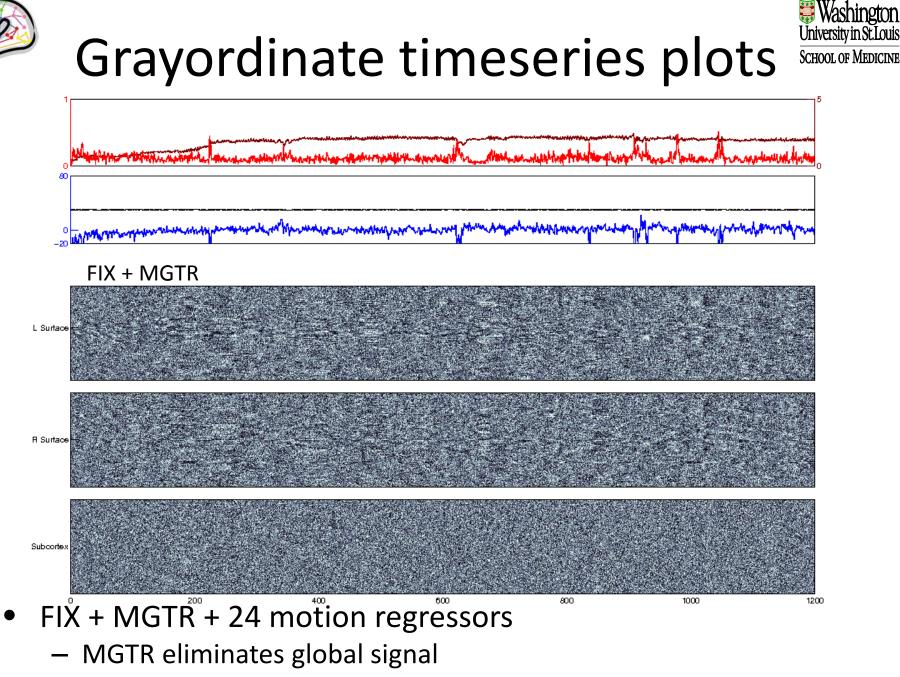
- GSR can induce anticorrelation (Murphy et al., 2009; Saad et al., 2012)
- Rebuttal (Power et al., 2015)
 - Yes, GSR can induce anticorrelation!
 - However, induced anticorrelation goes down as number of nodes in network model goes up
 - Motion and physiological noise likely induce worse artifactual changes in connectivity

Global Signal Regression: CONS

- Saad et al. 2012; Gotts et al., 2013: If groups differ in GS, GSR increase group-differences in anticorrelation
- Rebuttal (Power et al., 2015)
 - In real data, GSR reduces group differences between high- and low-motion groups, rather than increasing them

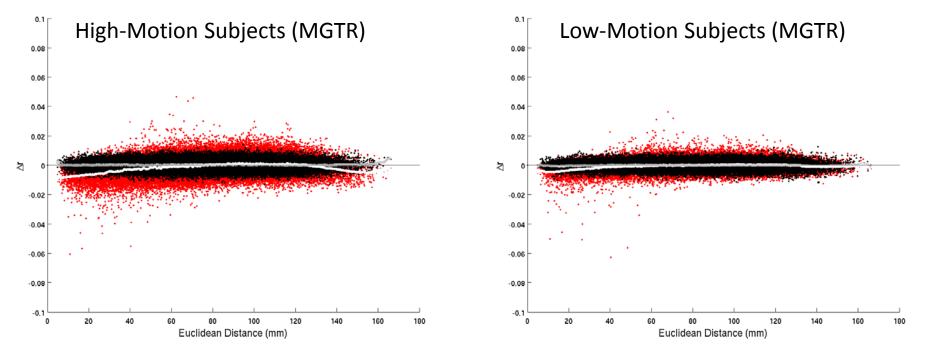
FIX + MGTR

- FIX and MGTR methods may be complementary
 - FIX: Spatially-specific noise components
 - MGTR: Global signal



- FIX removes additional spatially-specific noise

Distance-dependent artifact

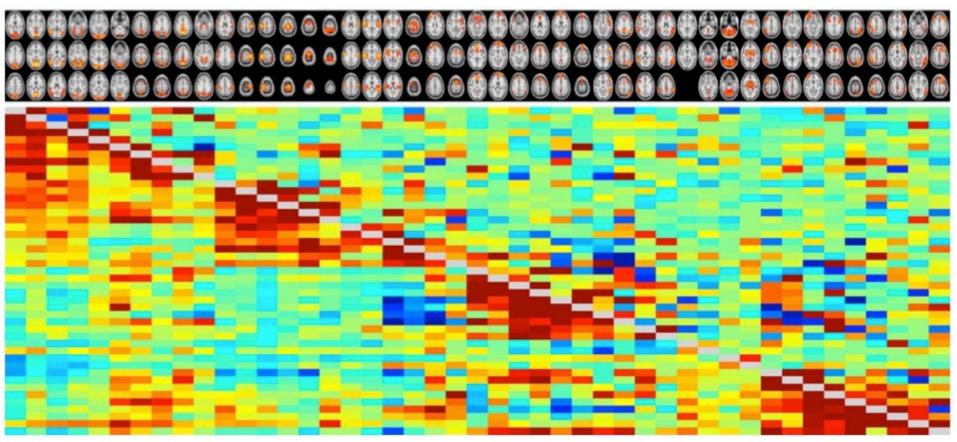


- MGTR eliminates global shift
- FIX reduces distance-dependent artifact

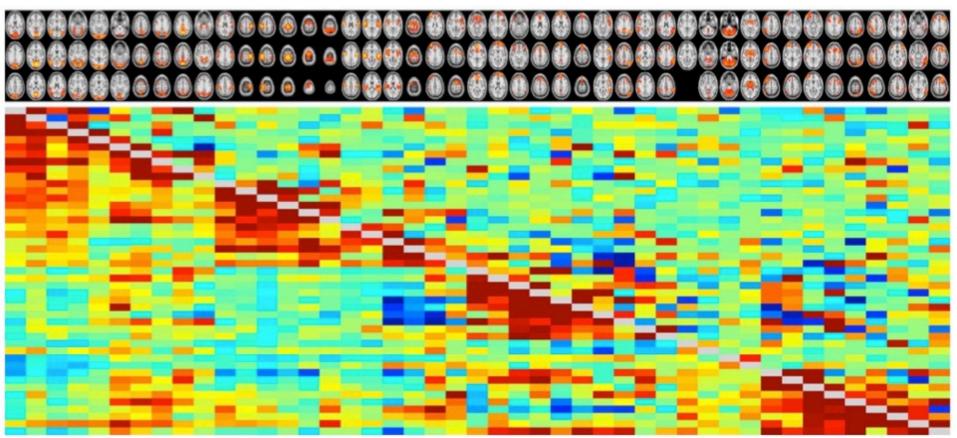
Motion-group differences

HIGH PASS	Pre-Censored			Post-Censored		
Condition	Low vs. High	Med vs. High	Low vs. Med	Low vs. High	Med vs. High	Low vs. Med
24-Motion	10525***	88*	14	7578***	49*	16*
FIX- Denoised	8790***	120*	23	7459***	74*	50*
24-Motion + MGTR	240***	13	6	109***	8	1
FIX+MGTR	235***	32*	16	174***	25	13

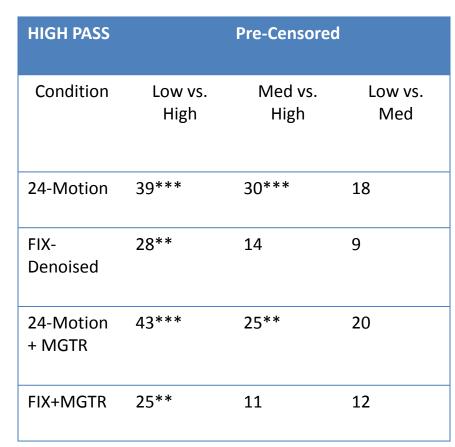
 FIX+MGTR does not reduce motion-group differences compared to MGTR



- Will be discussed in greater detail in next lecture
- Primary goal is to estimate direct connections (i.e., partial out all possible indirect pathways)



- Potential secondary benefit: Partialling all other timeseries should remove any artifact contained in those parcels
 - Should reduce influence of motion-related global signal...
 - However, Yan et al. (2013) found that partial correlation netmats showed motion-group differences unless GSR was conducted first



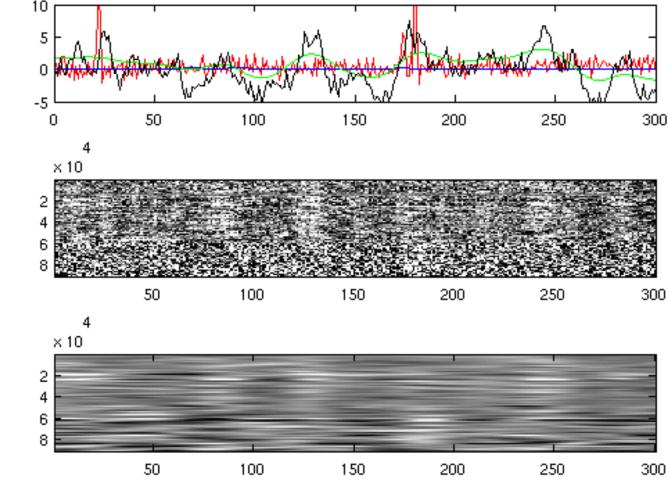
- Substantial decrease using partial correlations
- FIX reduces motion-group differences
- MGTR does not affect motion-group differences

Low pass temporal filter

• Let's slow down a bit...

Time series after low pass filter

Red: unfiltered DV Blue: filtered DV Black: unfiltered GS Green: filtered GS

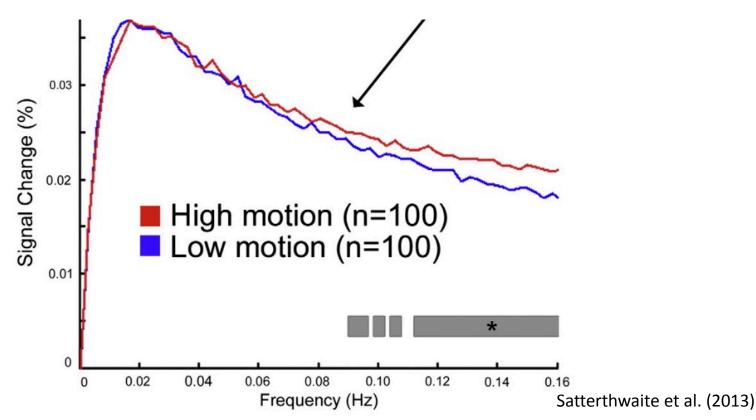


Unfiltered time series

Filtered time series

- Low-pass filtering loses a lot of temporal information
 - What is that information being removed?

Low pass filter: PROS



- Motion-group differences in magnitude spectra constrained to f > 0.08Hz
 - after motion regression, GSR, and spike regression (similar to censoring)

SCHOOL OF MEDICINE

Motion-group differences

BAND PASS	Pre-Censored			Post-Censored		
Condition	Low vs. High	Med vs. High	Low vs. Med	Low vs. High	Med vs. High	Low vs. Med
24-Motion	4102***	38*	3	2342***	47*	12
FIX- Denoised	3117***	55*	12	2217***	46	11
24-Motion + MGTR	383***	15	8	122***	17*	2
FIX+MGTR	192***	31	15	180***	22	14

- Without MGTR: Low pass filtering reduces motiongroup differences
- With MGTR: Little to no benefit of low pass filtering

Low pass filter: PROS

- Cordes et al. (2001): Physiological artifact also exists disproportionately above *f* = 0.10Hz
- However, FIX-ICA denoising removes apparent noise at those frequencies

Low pass filter: CONS

- There may be real signal at high-frequencies!
 - Niazy et al. (2011): discussed earlier
 - Boubela et al. (2013)

RSNs at high-frequencies

Boubela et al. 2013

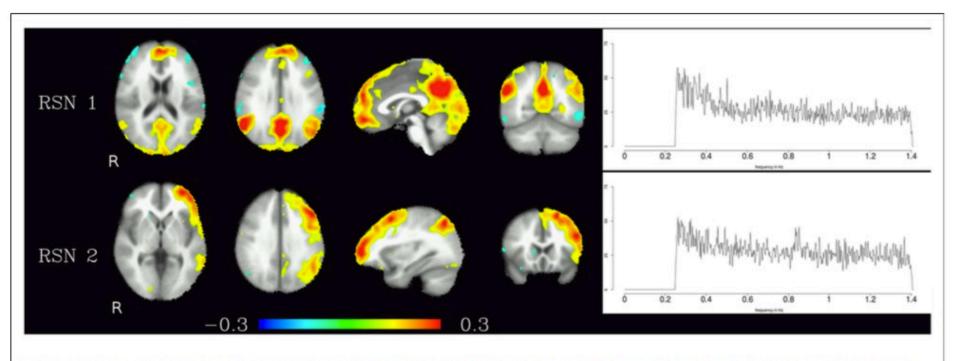


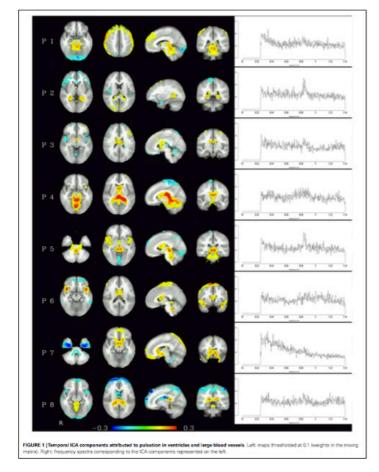
FIGURE 2 | Temporal ICA components representing high-frequency fluctuations in brain regions commonly associated with resting-state networks. Figure layout as in Figure 1.

- High-pass filter limited data to f > 0.25Hz
- Identified two ICs that overlapped with typical RSNs

RSNs at high-frequencies

Washington University in St.Louis School of Medicine

Boubela et al. 2013



• Also found quite a bit of noise components too!

Throwing the baby out with the bathwater

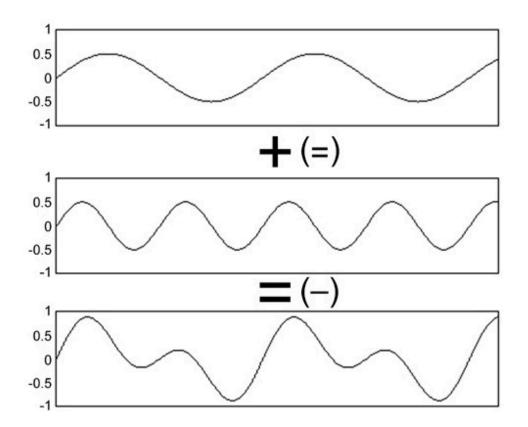
- Much of the controversy is essentially about
 - Throwing the baby (real signal of neural origin) out
 - with the bathwater (artifact)
 - Throwing babies out is a bad thing!

Throwing the baby out with the bathwater

- What if the baby turns out not to be *your* baby?
 - Higher-frequencies may show motion-group differences (Satterthwaite et al. 2013)
 - Increased motion may increase correlation with GS in some regions more than others (Power et al., 2015)

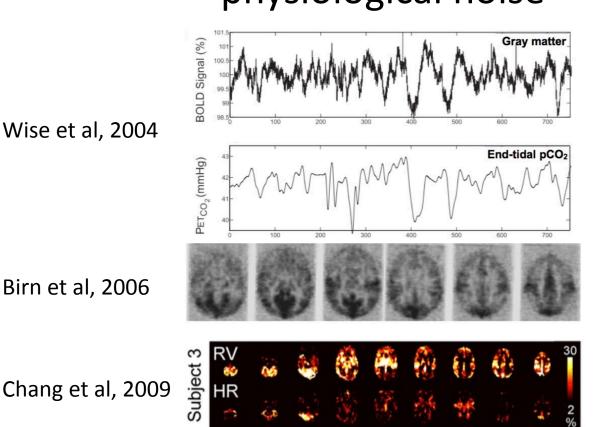
• Let's take a deep breath and move on...

Physiological denoising: RETROICO REMOIL OF MEDICINE

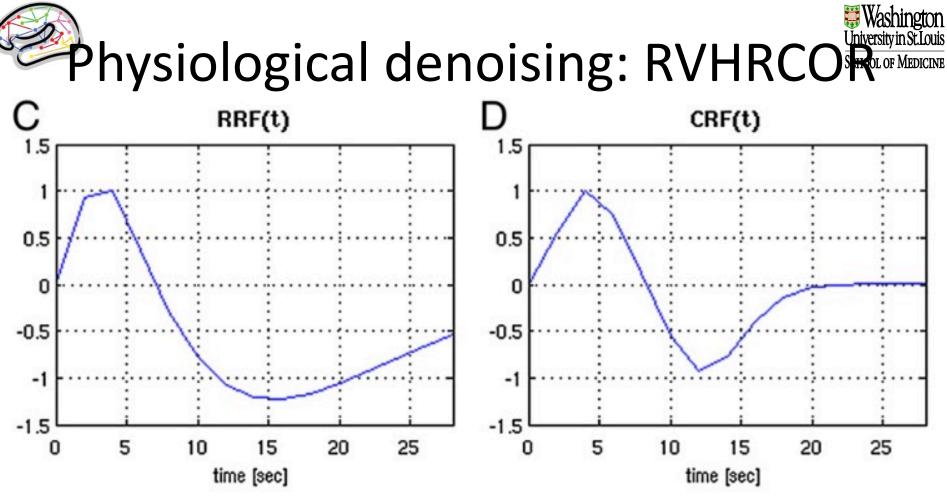


- Artifact due to cardiac-related pulsations and respiratory motion
- Physiological responses modeled as low-order Fourier series
 - sin and cos waves
 - Reflect frequency and phase of cardiac and respiratory recordings at time of image acquisition

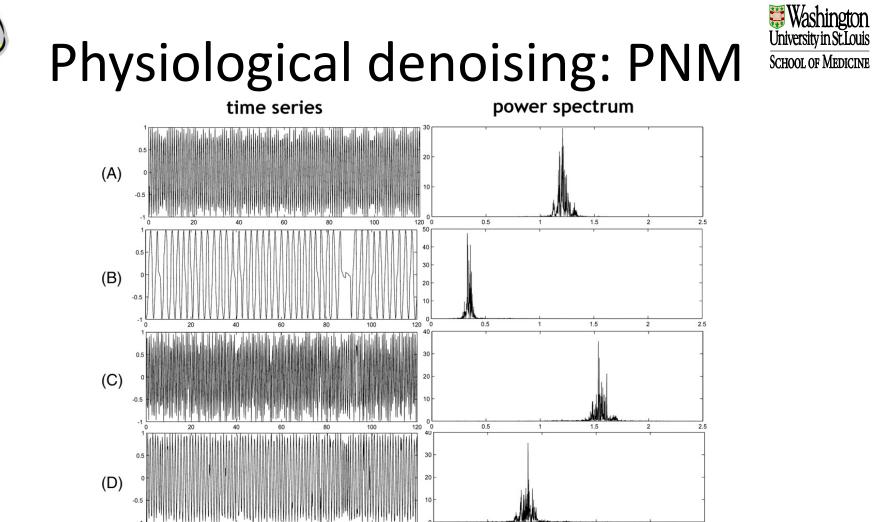
Additional effects of physiological noise



- End-tidal CO₂ concentration (and RVT) strongly related to gray matter signal (Birn et al., 2006; Wise et al., 2004)
- Heart rate fluctuations affect BOLD signal (Chang et al, 2009)



- These influences tend to be low-frequency
- Respiration volume (RV) convolved with "respiratory response function"
- Heart rate (HR) convolved with "cardiac response function"



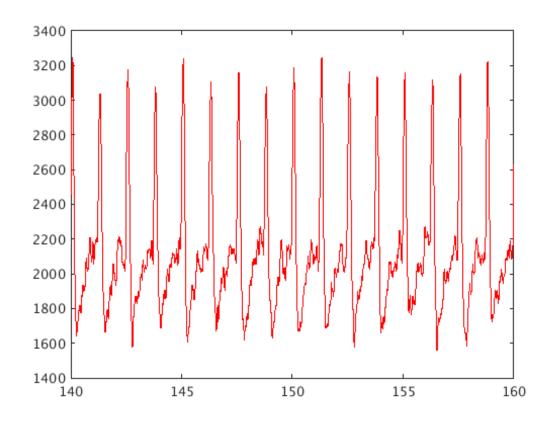
0.5

1.5

2.5

- Allows combination of:
 - RETROICOR regressors
 - Cardiac x Respiratory interaction regressors
 - RVHRCOR regressors
 - CSF regressor

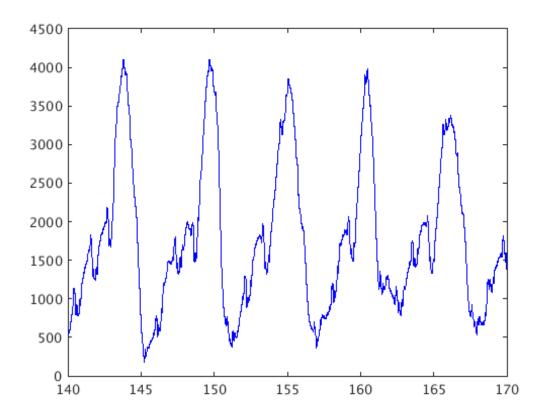
PNM example: Good



 Some participants produced clean respiratory and pulse ox traces ngton St.Louis

SCHOOL OF MEDICINE

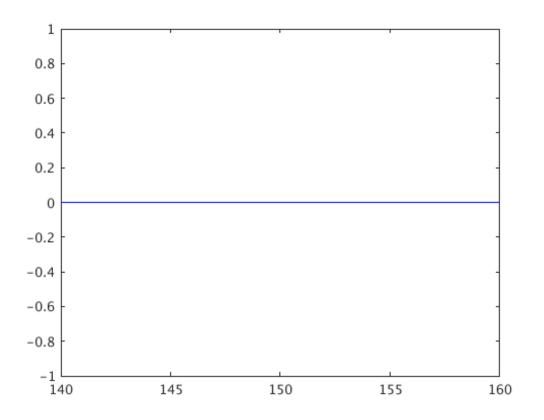
PNM example: Bad



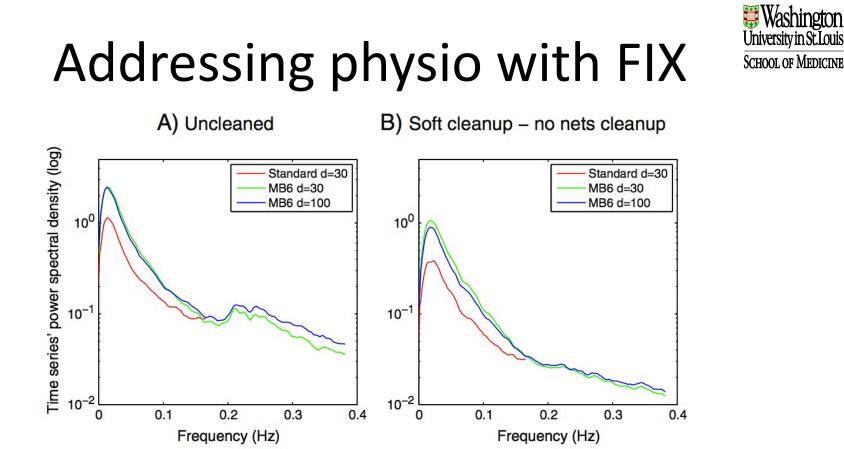
 Some physiological traces are exceptionally noisy, hit ceiling and/or floor, or drop out ngton

SCHOOL OF MEDICINE

PNM example: Impossible



 Some participants are missing physiological monitoring due to malfunction



- FIX classifies physiological artifact as noise Based on frequency and spatial location
- Physiological noise removed by regressing artifact timeseries

Ashington

t.Louis

Addressing physio with FIX

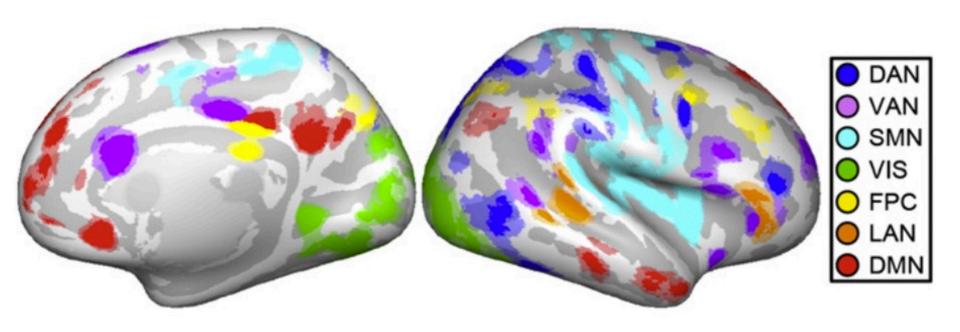
- However, physiological noise may be...
 - globally distributed (not fully decomposed by ICA)
 - lower-frequency (less likely labeled as noise)
- Additional physiological denoising might be helpful
 - if you don't want to do GSR / MGTR

Addressing physio with FIX

- Combining physiological regression with FIX may be a bit tricky
 - FIX before physic regression: change physic noise so it's no longer fit by physio regressors
 - Physio regression before FIX: change noise ICs so they are no longer correctly classified
- If you really want to try physiological regression in addition to FIX...
 - Identify FIX noise ICs separately
 - Combine FIX and physic regressors simultaneously into single denoising model 67

Switching gears...

- Hacker et al. (2013)
 - Goal: Compute extent and shape of known RSNs classes in individual participants
 - RSNs should be fairly similar across people
 - However, individual differences are likely to relate to psychologically meaningful variables

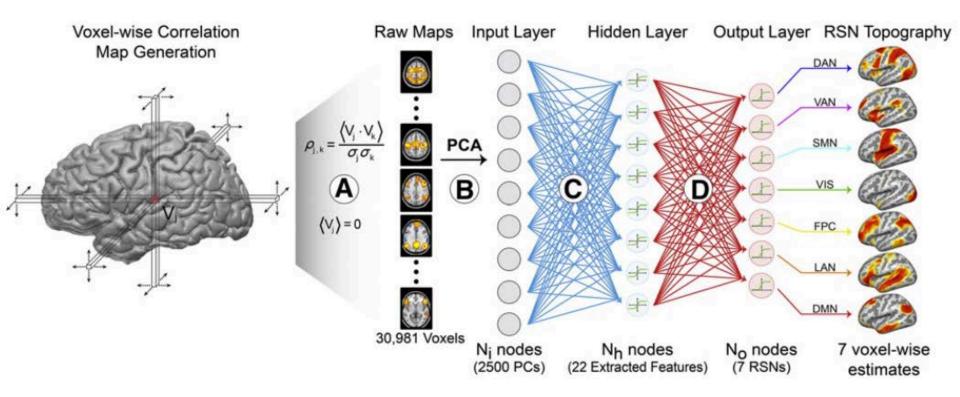


- Step 1: Define RSN classes
 - Conceptually similar to templates for dual regression
 - Defined 7 distinct RSNs using 169 ROIs from metaanalysis of task-fMRI activity (Dosenbach et al. 2007) 69

Choosing a template

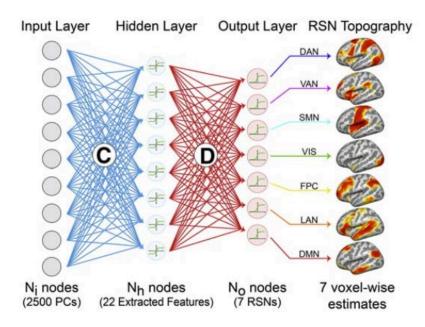
- Seed-based functional connectivity
 - Biased by seed choice
 - Avoid bias by choosing every seed in brain (Cohen et al., 2008)
 - Or bias with intent!
 - seeds via a more robust method (e.g., meta-analysis)
- ICA templates
 - Lots of statistical benefits
 - Interpretation of group components required
 - Some components may be group-level noise

Multi-Layer Perceptron: Classifies Fool of Medicine



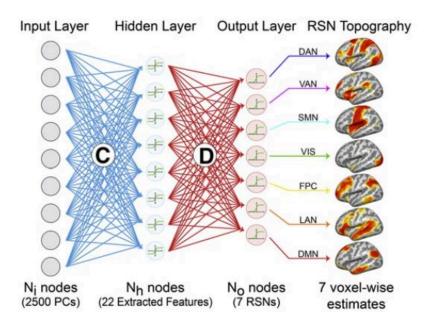
- Step 2: Design neural network classifier
- Inputs:
 - Whole-brain corr maps -> gray matter mask -> PCA reduction (2500 components)
- Feed-forward neural network:
 - 22 hidden layer nodes: Reflect learned features that map PCs to RSNs
 - 8 output nodes (7 RSNs + 1 nuisance): reflects confidence of membership in each class

Multi-Layer Perceptron: Training CHOOL OF MEDICINE



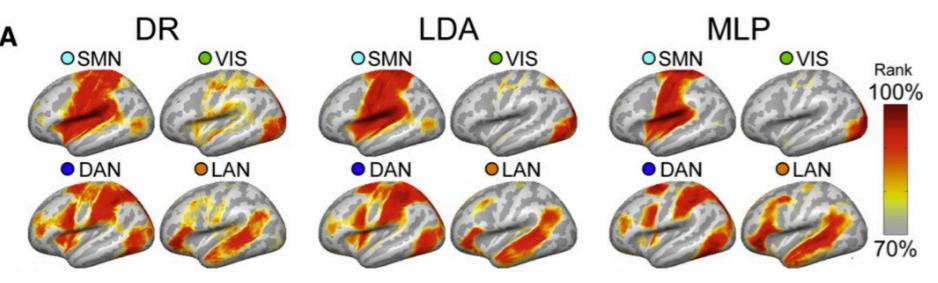
- Step 3: Train network
- Output nodes compared to a priori labels
 - Feed-forward network sets output node values
 - Compared to a priori label for seed: '1' for correct RSN, '0' for incorrect RSNs
 - Yields estimate of error at each output node

Multi-Layer Perceptron: Training CHOOL OF MEDICINE



- Error estimates modify weights via back-propagation
 - weights between output layer and hidden layer (D)
 - weights between hidden layer and input layer (C)
- Training iterations continue until classification accuracy asymptotes for all RSNs
 - or if MLP begins to overfit to training set
- Learned weights are fixed after training

Washington Multi-Layer Perceptron: Performance Medicine



- Step 4: Test MLP
- Procedure:
 - Extracted corr maps from a priori ROIs in individuals
 - Tested classification performance using trained MLP
 - Compared to performance of dual regression (DR) and linear discriminant analysis (LDA)
- Results:
 - MLP classified networks more distinctly than DR or LDA
 - less spatial overlap between networks
 - lower correlation between RSN estimates for different networks

Extending MLP

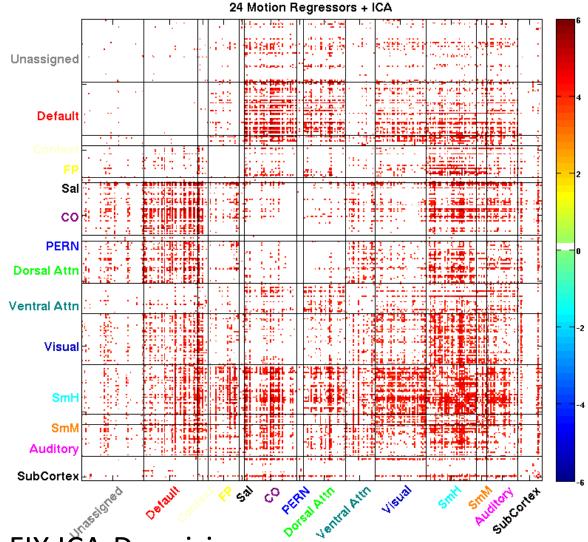
- Neural networks will one day rule the world
- In the meantime, we can train MLP to perform other classification tasks
 - Instead of classifying entire networks, classify individual parcels vs. adjacent / surrounding areas
- Train MLP to utilize additional inputs / features
 - Structural features: myelin, curvature
 - Task fMRI activation

Mahalo!

24 Motion Regressors

Unassigned Default Sal CO PERN Dorsal Attn Ventral Attn -2 Visual Sml -4 Smlv Auditor SubCortex PERM AIT SUBCOLET e de la uditory

- After 24-motion regressors:
 - motion-group differences between most networks across whole brain
 - High-motion group has more similarity between regions than low-motion

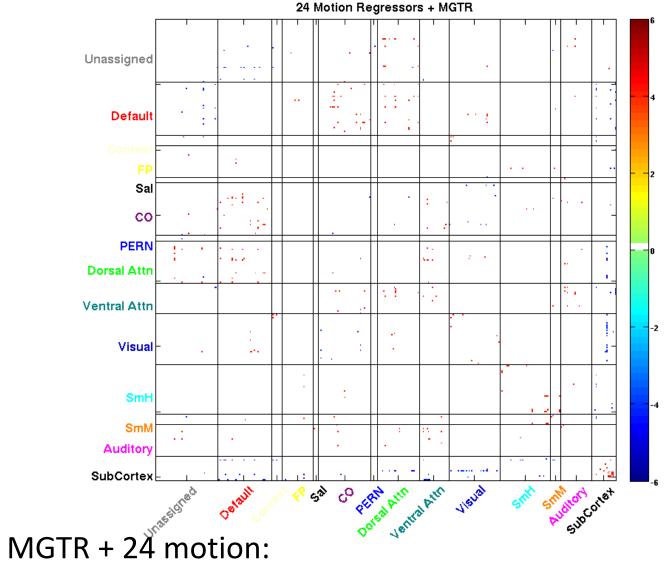


- After FIX ICA-Denoising:
 - motion-group differences with default remain stable
 - motion-group differences with somatomotor strengthen

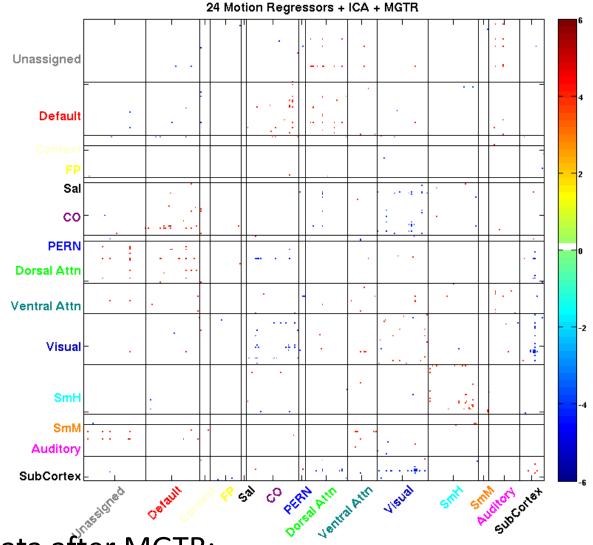
24 Motion Regressors

Unassigned Default Sal CO PERN **Dorsal Attn** Ventral Attn -2 Visual Sml -4 Smlv Auditor SubCortex PERM AIT SUBCOLET e de la uditory

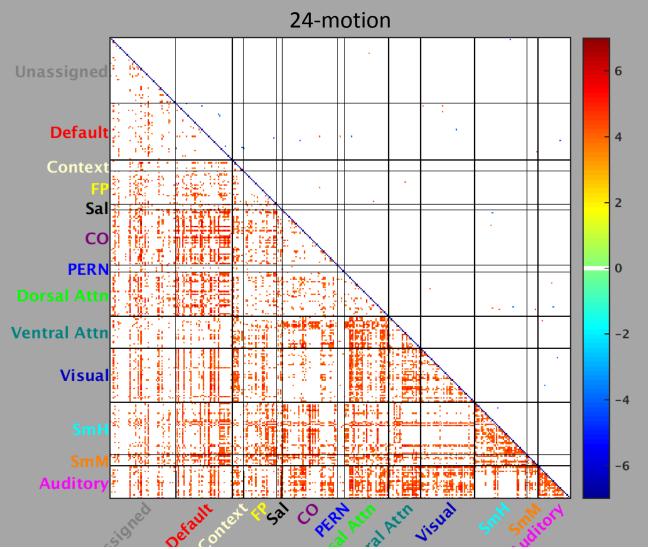
- After 24-motion regressors:
 - motion-group differences between most networks across whole brain
 - High-motion group has more similarity between regions than low-motion



- - motion-group differences dramatically reduced
 - remaining differences involve default with CO and Dorsal Attn 81



- FIX data after MGTR:
 - differences in different parcels within same networks
 - additional (negative) differences between Visual and CO



• Partial correlation matrices are very similar at each denoising stage:

- After 24-motion, few motion group differences (however, more than chance)
- After FIX, motion-group differences increase at some edges, decrease at others
- FIX+MGTR does not show appreciable differences to FIX only

